We study the branching random walk on weighted graphs; site-breeding and edgebreeding branching random walks on graphs are seen as particular cases. Two kinds of survival can be identified: a weak survival (with positive probability there is at least one particle alive somewhere at any time) and a strong survival (with positive probability the colony survives by returning infinitely often to a fixed site). The behavior of the process depends on the value of a certain parameter which controls the birth rates; the threshold between survival and (almost sure) extinction is called critical value. We describe the strong critical value in terms of a geometrical parameter of the graph. We characterize the weak critical value and relate it to another geometrical parameter. We prove that, at the strong critical value, the process dies out locally almost surely; while, at the weak critical value, global survival and global extinction are both possible.
We consider weak and strong survival for branching random walks on multigraphs with bounded degree. We prove that, at the strong critical value, the process dies out locally almost surely. We relate the weak critical value to a geometric parameter of the multigraph. For a large class of multigraphs (which enlarges the class of quasi-transitive or regular graphs), we prove that, at the weak critical value, the process dies out globally almost surely. Moreover, for the same class, we prove that the existence of a pure weak phase is equivalent to nonamenability. The results are extended to branching random walks on weighted graphs.
Given a branching random walk on a graph, we consider two kinds of truncations: either by inhibiting the reproduction outside a subset of vertices or by allowing at most m particles per vertex. We investigate the convergence of weak and strong critical parameters of these truncated branching random walks to the analogous parameters of the original branching random walk. As a corollary, we apply our results to the study of the strong critical parameter of a branching random walk restricted to the cluster of a Bernoulli bond percolation.
In this paper we study the strong local survival property for discrete-time and continuous-time branching random walks. We study this property by means of an infinite-dimensional generating function G and a maximum principle which, we prove, is satisfied by every fixed point of G. We give results for the existence of a strong local survival regime and we prove that, unlike local and global survival, in continuous time, strong local survival is not a monotone property in the general case (though it is monotone if the branching random walk is quasitransitive). We provide an example of an irreducible branching random walk where the strong local property depends on the starting site of the process. By means of other counterexamples, we show that the existence of a pure global phase is not equivalent to nonamenability of the process, and that even an irreducible branching random walk with the same branching law at each site may exhibit nonstrong local survival. Finally, we show that the generating function of an irreducible branching random walk can have more than two fixed points; this disproves a previously known result.
We consider weak and strong survival for branching random walks on multigraphs with bounded degree. We prove that, at the strong critical value, the process dies out locally almost surely. We relate the weak critical value to a geometrical parameter of the multigraph. For a large class of multigraphs (which enlarges the class of quasi-transitive or regular graphs) we prove that, at the weak critical value, the process dies out globally almost surely. Moreover for the same class we prove that the existence of a pure weak phase is equivalent to nonamenability. The results are extended to branching random walks on weighted graphs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.