Abstract. Dynamical processes during the formation phase of the Arctic stratospheric vortex in autumn (from September to December) can introduce considerable interannual variability in the amount of ozone that is incorporated into the vortex. Chemistry in autumn tends to remove part of this variability because ozone relaxes towards equilibrium. As a quantitative measure of how important dynamical variability during vortex formation is for the winter ozone abundances above the Arctic we analyze which fraction of an ozone anomaly induced during vortex formation persists until early winter (3 January). The work is based on the Lagrangian Chemistry Transport Model ATLAS. In a case study, model runs for the winter 1999-2000 are used to assess the fate of an ozone anomaly artificially introduced during the vortex formation phase on 16 September. In addition, runs with reduced resolution explore the sensitivity of the results to interannual changes in transport, mixing, temperatures and NO x . The runs provide information about the persistence of the induced ozone anomaly as a function of time, potential temperature and latitude. The induced ozone anomaly survives longer inside the polar vortex than outside the vortex. Half of the initial perturbation survives until 3 January at 550 K inside the polar vortex, with a rapid fall off towards higher levels, mainly due to NO x induced chemistry. Above 750 K the signal falls to values below 0.5 %. Hence, dynamically induced ozone variability from the early vortex formation phase cannot significantly contribute to early winter variability above 750 K. At lower levels increasingly larger fractions of the initial perturbation survive, reaching 90 % at 450 K. In this vertical range dynamical processes during the vortex formation phase are crucial for the ozone abundance in early winter.
Abstract. Early winter ozone mixing ratios in the Arctic middle stratosphere show an interannual variability of about 10 %. We show that ozone variability in early January is caused by dynamical processes during Arctic polar vortex formation in autumn (September to December). Observational data from satellites and ozone sondes are used in conjunction with simulations of the chemistry and transport model ATLAS to examine the relationship between the meridional and vertical origin of air enclosed in the polar vortex and its ozone amount. For this, we use a set of artificial model tracers to deduce the origin of the air masses in the vortex in January in latitude and altitude in September. High vortex mean ozone mixing ratios are correlated with a high fraction of air from low latitudes enclosed in the vortex and a high fraction of air that experienced small net subsidence (in a Lagrangian sense). As a measure for the strength of the Brewer-Dobson circulation and meridional mixing in autumn, we use the Eliassen-Palm flux through the mid-latitude tropopause averaged from September to November. In the lower stratosphere, this quantity correlates well with the origin of air enclosed in the vortex and reasonably well with the ozone amount in early winter.
Dynamical processes during the formation phase of the Arctic polar vortex can introduce considerable interannual variability in the amount of ozone that is incorporated into the vortex. Chemistry in autumn and early winter tends to remove part of that variability because ozone relaxes towards equilibrium. As a quantitative measure of how relevant variable dynamical processes during vortex formation are for the winter ozone abundances above the Arctic we analyze which fraction of an ozone anomaly induced dynamically during vortex formation persists until mid-winter. The work is based on the Lagrangian Chemistry Transport Model ATLAS. Model runs for the winter 1999–2000 are used to assess the fate of an ozone anomaly artificially introduced during the vortex formation phase. From these runs we get detailed information about the persistence of the induced ozone variability over time, height and latitude. Induced ozone variability survives longer inside the polar vortex compared to outside. At 540 K inside the polar vortex half of the initial perturbation survives until mid-winter (3 January) with a rapid fall off towards higher levels, mainly due to NO<sub>x</sub> induced chemistry. At 660 K 10% of the initial perturbation survives. Above 750 K the signal falls to values below 0.5%. Hence, dynamically induced ozone variability from the vortex formation phase can not significantly contribute to mid-winter variability at levels above 750 K. At lower levels increasingly larger fractions of the initial perturbation survive, reaching 90% at 450 K. In this vertical range dynamical processes during the vortex formation phase are crucial for the ozone abundance in mid-winter
Early winter ozone mixing ratios in the Arctic middle stratosphere show a fair amount of interannual variability. We show that ozone variability in early January is caused by dynamical processes during Arctic polar vortex formation in autumn (September to December). Observational data from satellites and ozone sondes are used in conjunction with simulations of the Chemistry and Transport Model ATLAS to examine the relationship between the meridional and vertical origin of air enclosed in the polar vortex and its ozone amount. For this, we use a set of artificial model tracers to deduce the origin of the air masses in the vortex in January in latitude and altitude in September. High vortex mean ozone mixing ratios are related to a high fraction of air from low latitudes enclosed in the vortex and a high fraction of air that experienced small net subsidence. As a measure for the strength of the Brewer-Dobson circulation and meridional mixing in autumn, we use the Eliassen-Palm flux through the mid-latitude tropopause averaged from August to November. In the lower stratosphere, this quantity correlates well with both the ozone amount in early winter and the origin of air enclosed in the vortex
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.