Aspirochlorine (1) is an epidithiodiketopiperazine (ETP) toxin produced from koji mold (Aspergillus oryzae), which has been used in the oriental cuisine for over two millennia. Considering its potential risk for food safety, we have elucidated the molecular basis of aspirochlorine biosynthesis. By a combination of genetic and chemical analyses we found the acl gene locus and identified the key role of AclH as a chlorinase. Stable isotope labeling, biotransformation, and mutational experiments, analysis of intermediates and an in vitro adenylation domain assay gave totally unexpected insights into the acl pathway: Instead of one Phe and one Gly, two Phe units are assembled by an iterative non-ribosomal peptide synthetase (NRPS, AclP), followed by halogenation and an unprecedented Phe to Gly amino acid conversion. Biological assays showed that both amino acid transformations are required to confer cytotoxicity and antifungal activity to the mycotoxin.
The regioselective functionalization of non-activated carbon atoms such as aliphatic halogenation is a major synthetic challenge. A novel multifunctional enzyme catalyzing the geminal dichlorination of a methyl group was discovered in Aspergillus oryzae (Koji mold), an important fungus that is widely used for Asian food fermentation. A biosynthetic pathway encoded on two different chromosomes yields mono- and dichlorinated polyketides (diaporthin derivatives), including the cytotoxic dichlorodiaporthin as the main product. Bioinformatic analyses and functional genetics revealed an unprecedented hybrid enzyme (AoiQ) with two functional domains, one for halogenation and one for O-methylation. AoiQ was successfully reconstituted in vivo and in vitro, unequivocally showing that this FADH2 -dependent enzyme is uniquely capable of the stepwise gem-dichlorination of a non-activated carbon atom on a freestanding substrate. Genome mining indicated that related hybrid enzymes are encoded in cryptic gene clusters in numerous ecologically relevant fungi.
Aspirochlorine (1) is an epidithiodiketopiperazine (ETP) toxin produced from koji mold (Aspergillus oryzae), which has been used in the oriental cuisine for over two millennia. Considering its potential risk for food safety, we have elucidated the molecular basis of aspirochlorine biosynthesis. By a combination of genetic and chemical analyses we found the acl gene locus and identified the key role of AclH as a chlorinase. Stable isotope labeling, biotransformation, and mutational experiments, analysis of intermediates and an in vitro adenylation domain assay gave totally unexpected insights into the acl pathway: Instead of one Phe and one Gly, two Phe units are assembled by an iterative non‐ribosomal peptide synthetase (NRPS, AclP), followed by halogenation and an unprecedented Phe to Gly amino acid conversion. Biological assays showed that both amino acid transformations are required to confer cytotoxicity and antifungal activity to the mycotoxin.
The regioselective functionalization of non-activated carbon atoms such as aliphatic halogenation is am ajor synthetic challenge.Anovel multifunctional enzyme catalyzing the geminal dichlorination of amethyl group was discovered in Aspergillus oryzae (Koji mold), an important fungus that is widely used for Asian food fermentation. Ab iosynthetic pathway encoded on two different chromosomes yields monoand dichlorinated polyketides (diaporthin derivatives), including the cytotoxic dichlorodiaporthin as the main product. Bioinformatic analyses and functional genetics revealed an unprecedented hybrid enzyme (AoiQ) with two functional domains,o ne for halogenation and one for O-methylation. AoiQ was successfully reconstituted in vivo and in vitro, unequivocally showing that this FADH 2 -dependent enzyme is uniquely capable of the stepwise gem-dichlorination of anonactivated carbon atom on af reestanding substrate.G enome mining indicated that related hybrid enzymes are encoded in cryptic gene clusters in numerous ecologically relevant fungi.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.