We present a combination of optical coherence tomography (OCT) and Raman spectroscopy (RS) for improved diagnosis and discrimination of different stages and grades of bladder cancer ex vivo by linking the complementary information provided by these two techniques. Bladder samples were obtained from biopsies dissected via transurethral resection of the bladder tumor (TURBT). As OCT provides structural information rapidly, it was used as a red-flag technology to scan the bladder wall for suspicious lesions with the ability to discriminate malignant tissue from healthy urothelium. Upon identification of degenerated tissue via OCT, RS was implemented to determine the molecular characteristics via point measurements at suspicious sites. Combining the complementary information of both modalities allows not only for staging, but also for differentiation of low-grade and high-grade cancer based on a multivariate statistical analysis. OCT was able to clearly differentiate between healthy and malignant tissue by tomogram inspection and achieved an accuracy of 71% in the staging of the tumor, from pTa to pT2, through texture analysis followed by k-nearest neighbor classification. RS yielded an accuracy of 93% in discriminating low-grade from high-grade lesions via principal component analysis followed by k-nearest neighbor classification. In this study, we show the potential of a multi-modal approach with OCT for fast pre-screening and staging of cancerous lesions followed by RS for enhanced discrimination of low-grade and high-grade bladder cancer in a non-destructive, label-free and non-invasive way.
Pituitary adenomas are neoplasia of the anterior pituitary gland and can be subdivided into hormone-producing tumors (lactotroph, corticotroph, gonadotroph, somatotroph, thyreotroph or plurihormonal) and hormone-inactive tumors (silent or null cell adenomas) based on their hormonal status. We therefore developed a line scan Raman microspectroscopy (LSRM) system to detect, discriminate and hyperspectrally visualize pituitary gland from pituitary adenomas based on molecular differences. By applying principal component analysis followed by a k-nearest neighbor algorithm, specific hormone states were identified and a clear discrimination between pituitary gland and various adenoma subtypes was achieved. The classifier yielded an accuracy of 95% for gland tissue and 84–99% for adenoma subtypes. With an overall accuracy of 92%, our LSRM system has proven its potential to differentiate pituitary gland from pituitary adenomas. LSRM images based on the presence of specific Raman bands were created, and such images provided additional insight into the spatial distribution of particular molecular compounds. Pathological states could be molecularly differentiated and characterized with texture analysis evaluating Grey Level Cooccurrence Matrices for each LSRM image, as well as correlation coefficients between LSRM images.
Pituitary adenomas count among the most common intracranial tumors. During pituitary oncogenesis structural, textural, metabolic and molecular changes occur which can be revealed with our integrated ultrahigh-resolution multimodal imaging approach including optical coherence tomography (OCT), multiphoton microscopy (MPM) and line scan Raman microspectroscopy (LSRM) on an unprecedented cellular level in a label-free manner. We investigated 5 pituitary gland and 25 adenoma biopsies, including lactotroph, null cell, gonadotroph, somatotroph and mammosomatotroph as well as corticotroph. First-level binary classification for discrimination of pituitary gland and adenomas was performed by feature extraction via radiomic analysis on OCT and MPM images and achieved an accuracy of 88%. Second-level multi-class classification was performed based on molecular analysis of the specimen via LSRM to discriminate pituitary adenomas subtypes with accuracies of up to 99%. Chemical compounds such as lipids, proteins, collagen, DNA and carotenoids and their relation could be identified as relevant biomarkers, and their spatial distribution visualized to provide deeper insight into the chemical properties of pituitary adenomas. Thereby, the aim of the current work was to assess a unique label-free and non-invasive multimodal optical imaging platform for pituitary tissue imaging and to perform a multiparametric morpho-molecular metabolic analysis and classification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.