Several lines of biochemical evidence correlate the presence of energy metabolic defects with the functional alterations associated with brain aging and with the pathogenesis of neurodegenerative disorders such as Alzheimer's disease. Within this context we tested the ability of insulin to regulate the amyloid precursor protein (APP) processing in SH-SY5Y neuroblastoma cells. Our findings show that insulin promotes APP metabolism by a glucose-independent mechanism. We demonstrate a novel intracellular pathway that increases the rate of secretion of soluble APP through the activity of phosphatidyl-inositol 3 kinase (PI3-K). This pathway, downstream of insulin receptor tyrosine kinase activity, does not involve either the activation of protein kinase C or the mitogen-activated protein kinase (MAP-K) pathway. Because of the physiological role of PI3-K in the translocation of glucose transporter-containing vesicles, we speculate that PI3-K involvement in APP metabolism may act at the level of vesicular trafficking.
Abstract:The metabolic fate of the amyloid precursor protein (APP) is one of the key factors in the pathogenesis of Alzheimer's disease (AD). A complex cellular mechanism regulates the rate at which the precursor is cleaved by ␣-secretase and released as soluble protein in the extracellular space. We show here that ␣-secretase constitutes the common final effector of several independent means of stimulation of soluble APP (sAPP) release. The release of sAPP by ␣-secretase resembles that of several other membrane-bound proteins with soluble counterparts, a process that is sensitive to matrix metalloprotease inhibitors. The hydroxamic acid-based compound KD-IX-73-4 inhibits phorbol ester-mediated sAPP release from COS cells with an IC 50 of 8 M, consistent with previous data for the same compound against leukocyte L-selectin shedding. Beyond direct protein kinase C (PKC) activation we show that KD-IX-73-4 inhibits also receptor-mediated sAPP release induced by carbachol in SH-SY5Y cells and by bradykinin in human skin fibroblasts, with the latter being a PKC-independent mechanism. Altogether these data suggest that all pharmacological means of stimulating sAPP release converge to a hydroxamic acid-based inhibitor-sensitive proteolytic enzyme. Moreover, because KD-IX-73-4 was effective in the inhibition of stimulated but not constitutive sAPP release, these data suggest the existence of different enzymes regulating the two metabolic pathways leading to sAPP secretion. Key Words: Alzheimer's disease -␣-Secretase -Protein kinase C-Amyloid precursor protein-Hydroxamic acids-Metalloprotease inhibitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.