Although molecular dynamics simulations allow for the study of interactions among virtually all biomolecular entities, metal ions still pose significant challenges in achieving an accurate structural and dynamical description of many biological assemblies, particularly to coarse-grained (CG) models. Although the reduced computational cost of CG methods often makes them the technique of choice for the study of large biomolecular systems, the parameterization of metal ions is still very crude or not available for the vast majority of CG force fields. Here, we show that incorporating statistical data retrieved from the Protein Data Bank (PDB) to set specific Lennard-Jones interactions can produce structurally accurate CG molecular dynamics simulations using the SIRAH force field. We provide a set of interaction parameters for calcium, magnesium, and zinc ions, which cover more than 80% of the metal-bound structures reported in the PDB. Simulations performed on several proteins and DNA systems show that it is possible to preclude the use of topological constraints by modifying specific Lennard-Jones interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.