Understanding of cetaceans’ trophic role and the quantification of their impacts on the food web is a critical task, especially when data on their prey are linked to deep-sea ecosystems, which are often exposed to excessive exploitation of fishery resources due to poor management. This aspect represents one of the major issues in marine resource management, and trade-offs are needed to simultaneously support the conservation of cetaceans and their irreplaceable ecological role, together with sustainable fishing yield. In that regard, food web models can represent useful tools to support decision-making processes according to an ecosystem-based management (EBM) approach. This study provides a focus on the feeding activity occurrence and the trophic interactions between odontocetes and the fishery in the marine food web of the Gulf of Taranto (Northern Ionian Sea, Central Mediterranean Sea), by zooming in on cetaceans’ prey of commercial interest. In particular, the quantification of trophic impacts is estimated using a food web mass-balance model that integrates information on the bathymetric displacement of both cetaceans’ prey and fishing activity. The results are discussed from a management perspective to guide future research and knowledge enhancement activities as well as support the implementation of an EBM approach.
This study is a first attempt to investigate the catch efficiency of LED light technology compared to the traditional incandescent lamp that is used in the purse seine fishery (PS) in the Central Adriatic Sea (Mediterranean Sea). Catches per unit effort were adopted to assess the performance of lighting systems, considering the electrical energy and the fuel consumption as effort units. Concerning the catch efficiency, the white LED, which emits the same light spectra as the incandescent lamp, increased the yield by over 2 times per consumption unit of energy and fuel. The yield efficiency increased up to approximately 6 and 9 times when adopting the pulsing white or blue LED, respectively. These increases were due to the energy savings resulting from the flashing of the white LED or by the greater water penetration of the blue LED. No significant difference in target species sizes was detected between the use of LEDs and the incandescent lamp. The results obtained from estimates of the hourly fuel consumption and CO2 emissions stress potential benefits in the reduction of the carbon footprint due to the use of LEDs within the PS fishery. Positive economic impacts were derived from the LED technology on the PS fishery, with the fuel cost-saving percentages all being higher than 60%. The LED technology clearly shows potential benefits at the economic level for the fishermen, and the possibility of mitigating indirect negative effects on the environment due to fuel combustion and greenhouse gas emissions. On the other hand, the application of new technology that improves the catch efficiency of fishing gears should be carefully considered. The lack of regulations controlling technological advancement could cause unwanted long-term effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.