The human urinary proteome has been reassessed and re-evaluated via a novel concentration/equalization technique, exploiting beads coated with hexameric peptide ligand libraries. These beads act by capturing the whole protein spectra contained in the sample, by drastically reducing the level of the most abundant species, while strongly concentrating the more dilute and rare ones. In a control urine sample, 134 unique proteins could be identified. The first bead eluate (in thiourea, urea, and CHAPS) permitted the identification of 317 gene products, whereas the second eluate (in 9 M urea, pH 3.8) allowed the identification of another 95 unique proteins. By eliminating redundancies, a total of 383 unique gene products could be identified in human urines. This represents a major increment as compared to data reported in recent literature. By comparing our data with those reported to the present, an additional 251 proteins could be added to the list, thus bringing the total unique gene products so far identified in human urines to ca. 800 species.
Arabidopsis halleri has the rare ability to colonize heavy metal-polluted sites and is an emerging model for research on adaptation and metal hyperaccumulation. The aim of this study was to analyze the effect of plant-microbe interaction on the accumulation of cadmium (Cd) and zinc (Zn) in shoots of an ecotype of A. halleri grown in heavy metal-contaminated soil and to compare the shoot proteome of plants grown solely in the presence of Cd and Zn or in the presence of these two metals and the autochthonous soil rhizosphere-derived microorganisms. The results of this analysis emphasized the role of plant-microbe interaction in shoot metal accumulation. Differences in protein expression pattern, identified by a proteomic approach involving 2-DE and MS, indicated a general upregulation of photosynthesis-related proteins in plants exposed to metals and to metals plus microorganisms, suggesting that metal accumulation in shoots is an energy-demanding process. The analysis also showed that proteins involved in plant defense mechanisms were downregulated indicating that heavy metals accumulation in leaves supplies a protection system and highlights a cross-talk between heavy metal signaling and defense signaling.
The present review attempts to cover a number of methods that have appeared in the last few years for performing quantitative proteome analysis. However, due to the large number of methods described for both electrophoretic and chromatographic approaches, we have limited this review to conventional two-dimensional (2-D) map analysis which couples orthogonally a charge-based step (isoelectric focusing) to a size-based separation step (sodium dodecyl sulfateelectrophoresis). The first and oldest method applied to 2-D map data reduction is based on statistical analysis performed on sets of gels via powerful software packages, such as Melanie, PDQuest, Z3 and Z4000, Phoretix and Progenesis. This method calls for separately running a number of replicas for control and treated samples. The two sets of data are then merged and compared via a number of software packages which we describe. In addition to commerciallyavailable systems, a number of home made approaches for 2-D map comparison have been recently described and are also reviewed. They are based on fuzzyfication of the digitized 2-D gel image coupled to linear discriminant analysis, three-way principal component analysis or a combination of principal component analysis and soft-independent modeling of class analogy. These statistical tools appear to perform well in differential proteomic studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.