IntroductionTwenty-four-hour urinary free cortisol (24h-UFC) is the most used test for follow-up decision-making in patients with Cushing syndrome (CS) under medical treatment. However, 24h-UFC determinations by immunoassays (IA) are commonly overestimated because of steroid metabolites’ cross-reaction. It is still uncertain how ketoconazole (KTZ)- and metyrapone (MTP)-induced changes on the urinary steroid metabolites can alter the 24h-UFC*IA determinations’ reliability.Methods24h-UFC was analyzed by IA and gas chromatography-mass spectrometry (GC-MS) in 193 samples (81 before treatment, 73 during KTZ, and 39 during MTP) from 34 CS patients. In addition, urinary steroidome was analyzed by GC-MS on each patient before and during treatment.ResultsBefore treatment, 24h-UFC*IA determinations were overestimated by a factor of 1.75 (95% CI 1.60–1.94) compared to those by GC-MS. However, during KTZ treatment, 24h-UFC*IA results were similar (0.98:1) to those by GC-MS (95% CI, 0.83–1.20). In patients taking MTP, IA bias only decreased 0.55, resulting in persistence of an overestimation factor of 1.33:1 (95% CI, 1.09–1.76). High method agreement between GC-MS and IA before treatment (R2 = 0.954) declined in patients under KTZ (R2 = 0.632) but not in MTP (R2 = 0.917). Upper limit normal (ULN) reductions in patients taking KTZ were 27% larger when using 24h-UFC*IA compared to 24h-UFC*GC-MS, which resulted in higher false efficacy and misleading biochemical classification of 15% of patients. Urinary excretion changes of 22 urinary steroid metabolites explained 86% of the 24h-UFC*IA interference. Larger urinary excretion reductions of 6β-hydroxy-cortisol, 20α-dihydrocortisol, and 18-hydroxy-cortisol in patients with KTZ elucidated the higher 24h-UFC*IA bias decrement compared to MTP-treated patients.ConclusionKTZ and MTP alter the urinary excretion of IA cross-reactive steroid metabolites, thus decreasing the cross-reactive interference of 24h-UFC*IA determinations present before treatment. Consequently, this interference reduction in 24h-UFC*IA leads to loss of method agreement with GC-MS and high risk of overestimating the biochemical impact of KTZ and MTP in controlling CS because of poor reliability of reference ranges and ULN.
Objective Pancreatic β-cell dysfunction is a central feature in the pathogenesis of type 2 diabetes (T2D). Accumulating evidence indicates that β-site APP-cleaving enzyme 2 (BACE2) inhibition exerts a beneficial effect on β-cells in different models of T2D. Thus, targeting BACE2 may represent a potential therapeutic strategy for the treatment of this disease. Here, we aimed to investigate the effects of BACE2 suppression on glucose homeostasis in a model of diet-induced obesity. Methods BACE2 knock-out (BKO) and wild-type (WT) mice were fed with a high-fat diet (HFD) for 2 or 16 weeks. Body weight, food intake, respiratory exchange ratio, locomotor activity, and energy expenditure were determined. Glucose homeostasis was evaluated by glucose and insulin tolerance tests. β-cell proliferation was assessed by Ki67-positive nuclei, and β-cell function was determined by measuring glucose-stimulated insulin secretion. Leptin sensitivity was evaluated by quantifying food intake and body weight after an intraperitoneal leptin injection. Neuropeptide gene expression and insulin signaling in the mediobasal hypothalamus were determined by qPCR and Akt phosphorylation, respectively. Results After 16 weeks of HFD feeding, BKO mice exhibited an exacerbated body weight gain and hyperphagia, in comparison to WT littermates. Glucose tolerance was similar in both groups, whereas HFD-induced hyperinsulinemia, insulin resistance, and β-cell expansion were more pronounced in BKO mice. In turn, leptin-induced food intake inhibition and hypothalamic insulin signaling were impaired in BKO mice, regardless of the diet, in accordance with deregulation of the expression of hypothalamic neuropeptide genes. Importantly, BKO mice already showed increased β-cell proliferation and glucose-stimulated insulin secretion with respect to WT littermates after two weeks of HFD feeding, before the onset of obesity. Conclusions Collectively, these results reveal that BACE2 suppression in an obesogenic setting leads to exacerbated body weight gain, hyperinsulinemia, and insulin resistance. Thus, we conclude that inhibition of BACE2 may aggravate the adverse metabolic effects associated with obesity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.