The assessment of the ecological status of water bodies, as requires by the European Water Framework Directive, can raise a number of problems when applied to temporary streams. These problems are because of the particular physical, chemical and biological conditions resulting from the recurrent cessation of flow or even the complete drying of the stream beds. In such non‐permanent water bodies, the reference quality standards developed for permanent streams may only be applicable under certain circumstances or may not be applicable at all. Work conducted within the collaborative EU‐funded project Mediterranean Intermittent River ManAGEment (MIRAGE) has addressed most of these difficulties and has used diverse approaches to solve them. These approaches have been brought together in the so‐called MIRAGE Toolbox. This toolbox consists of a series of methodologies that are designed to be used in a sequential manner to allow the establishment of the ecological and chemical status of temporary streams and to relate these findings to the hydrological status of the streams. The toolbox is intended to serve the following purposes: (i) the determination of the hydrological regime of the stream; (ii) the design of adequate schedules for biological and chemical sampling according to the aquatic state of the stream; (iii) the fulfillment of criteria for designing reference condition stations; (iv) the analysis of hydrological modifications of the stream regime (with the definition of the hydrological status); and (v) the development of new methods to measure the ecological status (including structural and functional methods) and chemical status when the stream's hydrological conditions are far from those in permanent streams. Copyright © 2014 John Wiley & Sons, Ltd.
Autumnal input of leaf litter is a pivotal energy source in most headwater streams. In temporary streams, however, water stress may lead to a seasonal shift in leaf abscission. Leaves accumulate at the surface of the dry streambed or in residual pools and are subject to physicochemical preconditioning before decomposition starts after flow recovery. In this study, we experimentally tested the effect of photodegradation on sunlit streambeds and anaerobic fermentation in anoxic pools on leaf decomposition during the subsequent flowing phase. To mimic field preconditioning, we exposed Populus tremula leaves to UV-VIS irradiation and wet-anoxic conditions in the laboratory. Subsequently, we quantified leaf mass loss of preconditioned leaves and the associated decomposer community in five low-order temporary streams using coarse and fine mesh litter bags. On average, mass loss after approximately 45 days was 4 and 7% lower when leaves were preconditioned by irradiation and anoxic conditions, respectively. We found a lower chemical quality and lower ergosterol content (a proxy for living fungal biomass) in leaves from the anoxic preconditioning, but no effects on macroinvertebrate assemblages were detected for any preconditioning treatment. Overall, results from this study suggest a reduced processing efficiency of organic matter in temporary streams due to preconditioning during intermittence of flow leading to reduced substrate quality and repressed decomposer activity. These preconditioning effects may become more relevant in the future given the expected worldwide increase in the geographical extent of intermittent flow as a consequence of global change.
Sediment drying associated with large water level fluctuations is an increasingly common feature of temporary streams and lakes worldwide. Drying-induced sediment aeration and re-flooding periodically alter redox conditions, and therefore stimulate redox-sensitive processes influencing phosphorus (P) binding forms. We experimentally tested the effects of drying on P binding forms, and the P sorption potential, by drying and re-flooding lake sediments in the laboratory. Wet and dried fine sediments were re-flooded in columns, and the overlying water was continuously re-stocked to a constant P concentration. We measured changes in P forms, P uptake rates, and the pore water dynamics in each column over 36 weeks. Drying decreased the fraction of stable P, stimulated the mineralization of organic P, and increased the proportion of labile and reductant-soluble forms. Drying of sediment furthermore reduced its P sorption affinity and capacity by up to 32% in batch equilibrium experiments, and led to a fourfold increase in sediment compaction which increased P uptake rates by a factor of 1.7 in sediment column experiments. Compaction due to drying also induced the development of a sharp gradient below which P was mobilized. These results indicate that in fine sediments, a single drying event can result in the transformation of P components into more labile forms which accumulate in the uppermost sediment layer, therefore raising the potential for a pulsed P release under reducing conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.