A novel class of luminescent tricarbonyl rhenium(I) complexes of general formula [Re2(mu-X)2(CO)6(mu-diaz)] (X=halogen and diaz=1,2-diazine) was prepared by reacting [ReX(CO)5] with 0.5 equiv of diazine (seven different ligands were used). The bridging coordination of the diazine in these dinuclear complexes was confirmed by single-crystal X-ray analysis. Cyclic voltammetry in acetonitrile showed for all the complexes (but the phthalazine derivative) a chemically and electrochemically reversible ligand-centered reduction, as well as a reversible metal-centered bielectronic oxidation. With respect to the prototypical luminescent [ReCl(CO)3(bpy)] complex, the oxidation is more difficult and the reduction easier (about +0.3 V), so that a similar highest occupied molecular orbital-lowest unoccupied molecular orbital gap is observed. All of the complexes exhibit photoluminescence at room temperature in solution, with broad unstructured emission from metal-to-ligand charge-transfer states, at lambda in the range 579-620 nm. Lifetimes (tau=20-2200 ns) and quantum yields (Phi up to 0.12) dramatically change upon varying the bridging ligand X and the diazine substituents: in particular, quantum yields decrease in the series Cl, Br, and I and in the presence of substituents at the alpha positions of the pyridazine ring. A combined density functional and time-dependent density functional study of the geometry, relative stability, electronic structure, and photophysical properties of all the pyridazine derivatives was performed. The nature of the excited states involved in the electronic absorption spectra was ascertained, and trends in the energy of the highest occupied and lowest unoccupied molecular orbitals upon changing the pyridazine substituents and the bridging halogen ligands were discussed. The observed emission properties of these complexes were shown to be related to a combination of steric and electronic factors affecting their ground-state geometry and their stability.
New luminescent dinuclear rhenium(I) tricarbonyl complex-PNA conjugates have been synthesized through a reliable solid-phase synthetic methodology. Their photophysical properties have been measured. The most luminescent Re-PNA conjugate 7 showed interesting two-photon absorption (TPA) properties, that were exploited for imaging experiments, to demonstrate its easy uptake into living cells.
The previously known anion [(C6F5)3B(mu-OH)B(C6F5)3]- (2) has been prepared by a two-step procedure, involving deprotonation of (C6F5)3BOH2 to give [B(C6F5)3OH]- (1), followed by addition of B(C6F5)3. The solution structure and the dynamics of 2 have been investigated by 1H and 19F NMR spectroscopy. The reaction of [NHEt3]2 with NEt3 resulted in the formation of [NHEt3]+ [(C6F5)3BOH]-, [NHEt3]+ [(C6F5)3BH]-, and (C6F5)3B- (CH2CH=N+ Et2). This indicates that in the presence of a nucleophile anion 2 can dissociate to B(C6F5)3 and 1. The reaction of [HDMAN]2 with 1,8-bis(dimethylamino)naphthalene (DMAN) confirmed this trend. In the presence of water, 2 transformed into the adduct [(C6F5)3BO(H)H...O(H)B(C6F5)3]- (3), containing the borate 1 hydrogen-bonded to a water molecule coordinated to B(C6F5)3. The same compound is formed by treating (C6F5)3BOH2 with 0.5 equiv of a base. A competition study established that for 1 the Lewis acid-base interaction with B(C6F5)3 is about 5 times preferred over H-bonding to (C6F5)3BOH2. The X-ray single-crystal analysis of [2-methyl-3H-indolium]3 provided the first experimental observation of an asymmetric H-bond in the [H3O2]- moiety, the measured O-H and H...O bond distances being significantly different [1.14(2) vs 1.26(2) A]. The reaction of NEt3 with an equimolar mixture of B(C6F5)3 and bis(pentafluorophenyl)borinic acid, (C6F5)2BOH, afforded the novel borinatoborate salt [NHEt3]+ [(C6F5)3BOB(C6F5)2]- ([NHEt3]4). X-ray diffraction showed that the B-O bond distances are significantly shorter than in [(C6F5)3B(mu-OH)B(C6F5)3]-. Variable-temperature 19F NMR revealed high mobility of the five aryl rings, at variance with the more crowded anion 2. 2D NMR correlation experiments showed that in CD2Cl2 the two anions [(C6F5)3BOH]- and [(C6F5)3BH]- form tight ion pairs with [NHEt3]+, in which the NH proton establishes a conventional (BO...HN) or an unconventional (BH...HN), respectively, hydrogen bond with the anion. The diborate anions 2-4, on the contrary, gave loose ion pairs with the ammonium cation, due both to the delocalized anionic charge and to the more sterically encumbered position of the oxygen atoms that should act as H-bond acceptors.
A series of neutral, dinuclear, luminescent rhenium(I) complexes suitable for phosphorescent organic light emitting devices (OLEDs) is reported. These compounds, of general formula [Re2(µ‐Cl)2(CO)6(µ‐1,2‐diazine)], contain diazines bearing alkyl groups in one or in both the β positions. Their electrochemical and photophysical properties are presented, as well as a combined density functional and time‐dependent density functional study of their geometry, relative stability and electronic structure. The complexes show intense green/yellow emissions in toluene solution and in the solid state and some of the complexes possess high emission quantum yields (ϕ = 0.18–0.22 for the derivatives with disubstituted diazines). In butyronitrile glass, at 77 K, due to the charge transfer character of the lowest (emitting) excited state, strong blue shift of the emission is observed, accompanied by a strong increase in the lifetime values. The highest‐performing emitting complex, containing cyclopentapyridazine as ligand, is tested in a polymer‐based light‐emitting device, with poly(9‐vinylcarbazole) as matrix, as well as in a device obtained by vacuum sublimation of the complex in the 2,7‐bis(diphenylphosphine oxide)‐9‐(9‐phenylcarbazol‐3‐yl)‐9‐phenylfluorene (PCF) matrix. This represents the first example of devices obtained with a rhenium complex which can be sublimed and is solution processable. Furthermore, the emission is the bluest ever reported for electrogenerated luminescence for rhenium complexes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.