The ICARUS EU-FP7 project deals with the development of a set of integrated components to assist search and rescue teams in dealing with the difficult and dangerous, but lifesaving task of finding human survivors. The ICARUS tools consist of assistive unmanned air, ground and sea vehicles, equipped with victim detection sensors. The unmanned vehicles collaborate as a coordinated team, communicating via ad-hoc cognitive radio networking. To ensure optimal human-robot collaboration, these tools are seamlessly integrated into the C4I (command, control, communications, computers, and intelligence) equipment of the human crisis managers and a set of training and support tools is provided to them to learn to use the ICARUS system.
Modern search and rescue workers are equipped with a powerful toolkit to address natural and man-made disasters. This introductory chapter explains how a new tool can be added to this toolkit: robots. The use of robotic assets in search and rescue operations is explained and an overview is given of the worldwide efforts to incorporate robotic tools in search and rescue operations. Furthermore, the European Union ICARUS project on this subject is introduced. The ICARUS project proposes to equip first responders with a comprehensive and integrated set of unmanned search and rescue tools, to increase the situational awareness of human crisis managers, such that more work can be done in a shorter amount of time. The ICARUS tools consist of assistive unmanned air, ground, and sea vehicles, equipped with victim-detection sensors. The unmanned vehicles collaborate as a coordinated team, communicating via ad hoc cognitive radio networking. To ensure optimal human-robot collaboration, these tools are seamlessly integrated into the command and control equipment of the human crisis managers and a set of training and support tools is provided to them to learn to use the ICARUS system.
Abstract. In the event of a large crisis (think about typhoon Haiyan or the Tohoku earthquake and tsunami in Japan), a primordial task of the rescue services is the search for human survivors on the incident site. This is a complex and dangerous task, which often leads to loss of lives among the human crisis managers themselves. The introduction of unmanned search and rescue devices can offer a valuable tool to save human lives and to speed up the search and rescue process. In this context, the EU-FP7-ICARUS project [1] concentrates on the development of unmanned search and rescue technologies for detecting, locating and rescuing humans. The complex nature and difficult operating conditions of search and rescue operations pose heavy constraints on the mechanical design of the unmanned platforms. In this paper, we discuss the different user requirements which have an impact of the design of the mechanical systems (air, ground and marine robots). We show how these user requirements are obtained, how they are validated, how they lead to design specifications for operational prototypes which are tested in realistic operational conditions and we show how the final mechanical design specifications are derived from these different steps. An important aspect of all these design steps which is emphasized in this paper is to always keep the end-users in the loop in order to come to realistic requirements and specifications, ensuring the practical deployability [2] of the developed platforms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.