Elodea nuttallii and Elodea canadensis have both been introduced from North America to Europe. They are now common in many water bodies where they often form dominating stands. It was suggested that negative relationships between Elodea and phytoplankton or epiphytic covers exist, probably due to the release of growth inhibiting allelochemicals. This would be an effective strategy to avoid light limitation caused by algae and cyanobacteria. We investigated the allelopathic potential of both E. nuttallii and E. canadensis against different photoautotrophs, focussing on epiphytic algae and cyanobacteria isolated from different submersed macrophytes and culture strains. Methanolic extracts of both species inhibited the growth of most of these organisms. Only a culture strain of Scenedesmus brevispina was stimulated. Further separation of extracts yielded several active fractions, indicating that hydrophilic and slightly lipophilic compounds were responsible for growth reduction. At least some of the activity seems to be related to phenolic substances, but flavonoids in these species are inactive. Since growth declined also in a moderately lipophilic fraction of culture filtrate of E. nuttallii, we assume that active compounds were exuded in the water. Allelopathy might thus be relevant in situ and suppress cyanobacteria and algae. We furthermore found differences in the susceptibility of target organisms, which could (1) at least partly be a result of adaptation to the respective host plants and (2) indicate that allelopathic interference might reduce the abundance of some species, especially cyanobacteria, in epiphytic biofilms. #
We investigated the allelopathic activity of two submersed macrophytes with different growth forms and nutrient uptake modes, Ceratophyllum demersum and Najas marina ssp. intermedia. A bioassay-directed method development revealed optimal extraction solvents for allelochemicals from both macrophytes. For Najas, 50% methanol and for Ceratophyllum 50% acetone yielded the strongest inhibition in the agar-diffusion assay with various filamentous or chroococcal cyanobacteria as target species. Further fractionation by liquid-liquid extraction (LLE) and solid phase extraction (SPE) procedures showed that both aquatic plants appear to have more than one active fraction, one being hydrophilic and one moderately lipophilic. The water-soluble allelochemicals may inhibit phytoplankton whereas the lipophilic allelochemicals may act through direct cell-cell contact, e.g., against epiphytes. Both macrophytes also exuded allelopathically active compounds into the surrounding medium as shown by SPE of their incubation water.
The submersed macrophyte Elodea nuttallii (Hydrocharitaceae) is invasive in Europe and frequently found in aquatic plant communities. Many invertebrate herbivores, such as larvae of the generalist aquatic moth, Acentria ephemerella (Lepidoptera, Pyralidae), avoid feeding on E. nuttallii and preferably consume native species. First instar larvae exhibited a high mortality on E. nuttallii compared to the native macrophyte Potamogeton perfoliatus. Mortality of older larvae was also high when fed E. nuttallii exposed to high light intensities. Growth of older larvae was strongly reduced on E. nuttallii compared to pondweeds (Potamogeton lucens). Neither differences in nitrogen nor phosphorus content explained the different performance on these submerged macrophytes, but plants differed in their flavonoid content. To investigate whether plant-derived allelochemicals from E. nuttallii affect larval performance in the same way as live plants, we developed a functional bioassay, in which Acentria larvae were reared on artificial diets. We offered larvae Potamogeton leaf disks coated with crude Elodea extracts and partially purified flavonoids. Elodea extracts deterred larvae from feeding on otherwise preferred Potamogeton leaves, and yet, unknown compounds in the extracts reduced growth and survival of Acentria. The flavonoid fraction containing luteolin-7-O-diglucuronide, apigenin-7-O-diglucuronide, and chrysoeriol-7-O-diglucuronide strongly reduced feeding of larvae, but did not increase mortality. The concentrations of these compounds in our assays were 0.01-0.09% of plant dry mass, which is in the lower range of concentrations found in the field (0.02-1.2%). Chemical defense in E. nuttallii thus plays an ecologically relevant role in this aquatic plant-herbivore system.
Manche Einsätze lassen das Herz höherschlagenaber nicht, weil sie so interessant oder aufregend sind. Ab und an beschleicht einen eher ein ungutes Gefühl. So auch hier.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.