The measurement of Barkhausen noise is one of the non-destructive testing methods which allows the use within the production line and within the cycle time at a high production volume. The aim of the present study was to answer the question, whether it is possible to extract the informations that the Barkhausen noise includes, concerning work-piece conditions, from the signal characteristic and more important assigning these findings. Therefore, soft machined and heat treated shaft components made of the ferromagnetic material Cf53 (1.1213) were analyzed to find characteristics in the Signal that allow to separate clearly an increase in temperature of the tested area from a change in the microstructure. For this purpose the shafts were analyzed at higher temperatures (up to 80 °C) and after an additional annealing process (to change the microstructure specifically). Both investigated situations (higher temperature and modified microstructure) showed different characteristic in the Barkhausen signal, thus an assigning is possible. Metallographic investigation and hardness measurements has been carried out to support the results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.