Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
We observe a realization of a stationary weighted Voronoi tessellation of the d-dimensional Euclidean space within a bounded observation window. Given a geometric characteristic of the typical cell, we use the minus-sampling technique to construct an unbiased estimator of the average value of this geometric characteristic. Under mild conditions on the weights of the cells, we establish variance asymptotics and the asymptotic normality of the unbiased estimator as the observation window tends to the whole space. Moreover, weak consistency is shown for this estimator.
We observe a realization of a stationary generalized weighted Voronoi tessellation of the d-dimensional Euclidean space within a bounded observation window. Given a geometric characteristic of the typical cell, we use the minus-sampling technique to construct an unbiased estimator of the average value of this geometric characteristic. Under mild conditions on the weights of the cells, we establish variance asymptotics and the asymptotic normality of the unbiased estimator as the observation window tends to the whole space. Moreover, the weak consistency is shown for this estimator.
We introduce cylinder processes in the plane defined as union sets of dilated straight lines (appearing as mutually overlapping infinitely long strips) generated by a stationary independently marked point process on the real line, where the marks describe the width and orientation of the individual cylinders. We study the behavior of the total area of the union of strips contained in a space-filling window ϱK as ϱ → ∞. In the case the unmarked point process is Brillinger mixing, we prove themean-square convergence of the area fraction of the cylinder process in ϱK. Under stronger versions of Brillinger mixing, we obtain the exact variance asymptotics of the area of the cylinder process in ϱK as ϱ → ∞. Due to the long-range dependence of the cylinder process, this variance increases asymptotically proportionally to ϱ3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.