Annually, millions of tons of foods are generated with the purpose to feed the growing world population. One particular eatable is orange, the production of which in 2018 was 75.54 Mt. One way to valorize the orange residue is to produce bioethanol by fermenting the reducing sugars generated from orange peel. Hence, the objective of the present work was to determine the experimental conditions to obtain the maximum yield of reducing sugars from orange peel using a diluted acid hydrolysis process. A proximate and chemical analysis of the orange peel were conducted. For the hydrolysis, two factorial designs were prepared to measure the glucose and fructose concentration with the 3,5-DNS acid method and UV-Visible spectroscopy. The factors were acid concentration, temperature and hydrolysis time. After the hydrolysis, the orange peel samples were subjected to an elemental SEM-EDS analysis. The results for the orange peel were 73.530% of moisture, 99.261% of volatiles, 0.052% of ash, 0.687% of fixed carbon, 19.801% of lignin, 69.096% of cellulose and 9.015% of hemicellulose. The highest concentration of glucose and fructose were 24.585 and 9.709 g/L, respectively. The results highlight that sugar production is increased by decreasing the acid concentration.
The brewing industry generates, as the primary coproduct, brewers’ spent grain (BSG). In Mexicali, Baja California, Mexico, there are 17 companies that generated 282 tons of BSG by 2016. Cattle feeding is the most common type of disposal for this waste. However, it can be valorized for the production of bioenergy or as a source of added-value products. Therefore, the objective of the present work was to assess the physicochemical properties of the brewers’ spent grain from a local craft brewery, to choose the most appropriate exploitation route. Chemical and morphological analyses were carried out by energy dispersive X-ray fluorescence spectroscopy (EDX), scanning electron microscopy, and the higher heating value determination. The results of the proximate analyses were 72.32% moisture, 78.47% volatile matter, 17.48% fixed carbon, and 4.05% ash. The results of the chemical analysis for extractables were 5.23% using organic solvent and 50.25% using hot water. The content determination were 17.13% lignin, 26.80% cellulose, and 37.17% hemicellulose. The results of the ultimate analysis were 43.59% C, 6.18% H, 3.46% N, and 37.22% O. The higher heating value experimentally obtained was 18.70 MJ/kg. Moreover, in the EDX analysis, Ca, P, K, and S were mainly found. It is recommendable to valorize the BSG through the xylitol, bioethanol or biogas production, because of its high moisture, hemicellulose and cellulose content.
The state of Baja California, Mexico, is the second national wheat producer. Mexicali, the capital of Baja California, is the primary wheat producer, and it represents the most significant crop in the valley, with 90,609 ha of a cultivated surface by 2015; it leads to a wheat production of 585,334 t and a generation of 661,446 t of wheat straw as agricultural residue. The 15% of this waste has various uses. The 85% of wheat straw is open burnt in situ to prepare the farmland for the next agricultural cycle. Through the development of an emissions and energy model on iThink ® , the emissions of 6,185 t of PM, 35,983 t of CO, and 1,125 t of CH 4 considering a headfire burning or 3,373 t of PM, 30,360 t of CO, and 731 t of CH 4 by backfire burning were estimated. Also, the wheat straw wasted energy was estimated at 8.15 PJ by 2015, with a lower heating value of 14.50 MJ/kg determined experimentally. The results highlight that for each hectare of harvested wheat, 6.205 t of wheat straw are generated and burnt. It represents the emission of pollutants and 89,972.50 MJ of wasted energy.
Wheat is one of the main crops worldwide with a production of 733 million of tons by 2015. By 2013, the wheat grain production in Mexico was 3,357,307 t. Wheat straw is generated as a biomass waste once the wheat is harvested. However, the agricultural biomass waste has acquired international relevance as a source of bioenergy. The utilization of bioenergy has signiicant environmental beneits, and also economic beneits because the biomass waste is valorized as biofuel. The use of wheat straw as raw material for any productive process presents diverse factors that must be considered. Among those factors are the low density of biomass, handling and high transportation cost, an atractive heating value, and the physicochemical characterization. Therefore, the aim of this work was to apply the SWOT analysis to wheat straw utilization as a biofuel in Mexico. The main indings highlighted an estimation of 4,612,950.23 t of wheat straw generated. The experimental results of proximate analysis were 64.42% volatile mater, 19.49% ixed carbon and 16.09% ash. The higher heating was 14.86 MJ/kg. An energy potential of 69 PJ per agricultural cycle was calculated, equivalent to 19% of the biomass energy share reported in Mexico's National Energy Balance, by 2014.
Wheat is one of the most important crops worldwide. Mexicali, Baja California, is an important wheat producer in Mexico with an average production of 507,543 t. Wheat straw is generated as a residue which could be used for different purposes such as bioenergy, heat and power generation. In this work, an assessment and potential site determination of a biomass power plant operating with wheat straw as fuel was performed. Aspen Plus was used to evaluate a plant capacity of at least 10 MW considering the physicochemical properties and an higher heating value of 14.86 MJ kg−1 of the wheat straw from the region. The combustion produced 39.76 MW, and the overall plant efficiency was 25.52%. The development of the multi-criteria geographic information system model allowed us to assess and analyse four factors and three restrictions to determine the potential site for the biomass power plant. The factors were raw material, wheat crops, electric transmission lines, paths and roads, water canals and aqueducts, while the restrictions were localities, Ramsar sites and faults. The biomass power plant is technically and geographically feasible. The geographical coordinates of the potential site of the biomass power plant that fulfils all the criteria are 32°29′29.72″N and 115°15′39.45″W.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.