expression of immature markers β-III-tubulin and doublecortin in BrdU-labeled cells, peaked early after division and was not detectable after 4 weeks. In transgenic mice expressing enhanced green fluorescent protein under the nestin promoter none of the BrdU/nestin-positive cells early after division expressed the mature marker NeuN, confirming that no dividing neurons were detected. These new data suggest that new neurons are recruited early from the pool of proliferating progenitor cells and lead to a lasting effect of adult neurogenesis.
Neurons are continually born from endogenous stem cells and added to the dentate gyrus throughout life, but adult hippocampal neurogenesis declines precipitously with age. Short-term exposure to an enriched environment leads to a striking increase in new neurons, along with a substantial improvement in behavioral performance. Could this plastic response be relevant for explaining the beneficial effects of leading "an active life" on brain function and pathology? Adult hippocampal neurogenesis in mice living in an enriched environment from the age of 10 to 20 months was fivefold higher than in controls. Relatively, the increase in neuronal phenotypes was entirely at the expense of newly generated astrocytes. This cellular plasticity occurred in the context of significant improvements of learning parameters, exploratory behavior, and locomotor activity. Enriched living mice also had a reduced lipofuscin load in the dentate gyrus, indicating decreased nonspecific age-dependent degeneration. Therefore, in mice signs of neuronal aging can be diminished by a sustained active and challenging life, even if this stimulation started only at medium age. Activity exerts not only an acute but also a sustained effect on brain plasticity.
Aberrant β-catenin-TCF target gene activation plays a key role in colorectal cancer, both in the initiation stage and during invasion and metastasis. We identified the neuronal cell adhesion molecule L1, as a target gene of β-catenin-TCF signaling in colorectal cancer cells. L1 expression was high in sparse cultures and coregulated with ADAM10, a metalloprotease involved in cleaving and shedding L1's extracellular domain. L1 expression conferred increased cell motility, growth in low serum, transformation and tumorigenesis, whereas its suppression in colon cancer cells decreased motility. L1 was exclusively localized in the invasive front of human colorectal tumors together with ADAM10. The transmembrane localization and shedding of L1 by metalloproteases could be useful for detection and as target for colon cancer therapy.
Cells can release membrane components in a soluble form and as membrane vesicles. L1, an important molecule for cell migration of neural and tumor cells, is released by membrane-proximal cleavage, and soluble L1 promotes cell migration. Release of L1 is enhanced by shedding inducers such as phorbol ester and pervanadate, but it is also enhanced by depletion of cellular cholesterol with methyl-beta-cyclodextrin (MCD). How such different compounds can induce shedding is presently unknown. We show here that ADAM10 is involved in L1 cleavage, which occurs at the cell surface and in the Golgi apparatus. MCD and pervanadate treatment induced the release of microvesicles containing full-length L1 and the active form of ADAM10. L1 cleavage occurred in isolated vesicles. L1-containing microvesicles could trigger haptotactic cell migration. Only the neural L1 form carrying the RSLE signal for clathrin-dependent endocytosis was recruited and cleaved in vesicles. Phorbol ester treatment activated L1 cleavage predominantly at the cell surface. Our results provide evidence for two pathways of L1 cleavage, based on ADAM10 localization, that can be activated differentially: 1) direct cleavage at the cell surface, and 2) release and cleavage in secretory vesicles most likely derived from the Golgi apparatus. The findings establish a novel role for ADAM10 as a vesicle-based protease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.