Background: Prolonged intense exercise has been associated with transient suppression of immune function and an increased risk of infections. In this context, the catabolism of amino acid tryptophan via kynurenine may play an important role. The present study examined the effect of a probiotic supplement on the incidence of upper respiratory tract infections (URTI) and the metabolism of aromatic amino acids after exhaustive aerobic exercise in trained athletes during three months of winter training. Methods: Thirty-three highly trained individuals were randomly assigned to probiotic (PRO, n = 17) or placebo (PLA, n = 16) groups using double blind procedures, receiving either 1 × 1010 colony forming units (CFU) of a multi-species probiotic (Bifidobacterium bifidum W23, Bifidobacterium lactis W51, Enterococcus faecium W54, Lactobacillus acidophilus W22, Lactobacillus brevis W63, and Lactococcus lactis W58) or placebo once per day for 12 weeks. The serum concentrations of tryptophan, phenylalanine and their primary catabolites kynurenine and tyrosine, as well as the concentration of the immune activation marker neopterin were determined at baseline and after 12 weeks, both at rest and immediately after exercise. Participants completed a daily diary to identify any infectious symptoms. Results: After 12 weeks of treatment, post-exercise tryptophan levels were lowered by 11% (a significant change) in the PLA group compared to the concentrations measured before the intervention (p = 0.02), but remained unchanged in the PRO group. The ratio of subjects taking the placebo who experienced one or more URTI symptoms was increased 2.2-fold compared to those on probiotics (PLA 0.79, PRO 0.35; p = 0.02). Conclusion: Data indicate reduced exercise-induced tryptophan degradation rates in the PRO group. Daily supplementation with probiotics limited exercise-induced drops in tryptophan levels and reduced the incidence of URTI, however, did not benefit athletic performance.
Exhaustive exercise can cause a transient depression of immune function. Data indicate significant effects of immune activation cascades on the biochemistry of monoamines and amino acids such as tryptophan. Tryptophan can be metabolized through different pathways, a major route being the kynurenine pathway, which is often systemically up-regulated when the immune response is activated. The present study was undertaken to examine the effect of exhaustive aerobic exercise on biomarkers of immune activation and tryptophan metabolism in trained athletes. After a standardized breakfast 2 h prior to exercise, 33 trained athletes (17 women, 16 men) performed an incremental cycle ergometer exercise test at 60 rpm until exhaustion. After a 20 min rest phase, the participants performed a 20 min maximal time-trial on a cycle ergometer (RBM Cyclus 2, Germany). During the test, cyclists were strongly encouraged to choose a maximal pedalling rate that could be maintained for the respective test duration. Serum concentrations of amino acids tryptophan, kynurenine, phenylalanine, and tyrosine were determined by HPLC and immune system biomarker neopterin by ELISA at rest and immediately post exercise. Intense exercise was associated with a strong increase in neopterin concentrations (p<0.001), indicating increased immune activation following intense exercise. Exhaustive exercise significantly reduced tryptophan concentrations by 12% (p<0.001) and increased kynurenine levels by 6% (p = 0.022). Also phenylalanine to tyrosine ratios were lower after exercise as compared with baseline (p<0.001). The kynurenine to tryptophan ratio correlated with neopterin (r = 0.560, p<0.01). Thus, increased tryptophan catabolism by indoleamine 2,3-dioxygenase appears likely. Peak oxygen uptake correlated with baseline tryptophan and kynurenine concentrations (r = 0.562 and r = 0.511, respectively, both p<0.01). Findings demonstrate that exhaustive aerobic exercise is associated with increased immune activation and alterations in monoamine metabolism in trained athletes which may play a role in the regulation of mood and cognitive processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.