Purpose Nutrient release, soil wettability, water binding, and matrix rigidity of soil organic matter (SOM) can be affected by cross-links between segments of SOM, cations, and water molecule bridges (WaMB). Not all cation effects on SOM can be explained with the currently accepted idea that multivalent cations cross-link organic matter segments via direct cation bridges (CaB). The objective was to understand these interactions and their effect on SOM matrix rigidity and wettability. Materials and methods We modified cation composition of two peats and an organic surface layer (OSL) using cation exchange resin to remove cations and solutions of Na + , Ca 2+ , or Al 3+ to enrich samples with cations. SOM matrix rigidity was determined at 4 and >8 weeks after treatment via the WaMB transition temperature T*, using differential scanning calorimetry. Wettability was measured via sessile drop contact angle (CA).
Results and discussionThe effect of cation removal on T* depended on cation exchange capacity and initial cation content. Cation addition to OSL increased T*. This effect increased with increasing cation loading and valency, and T* correlated with CA. Classical cross-linking can neither explain the higher heterogeneous matrix of Ca-treated than Altreated samples nor the aging-induced convergence of T* for different cations and concentrations. The latter is likely due to interaction between CaB and WaMB in SOM.Conclusions Associations of CaB and WaMB evolve slowly and form a supramolecular network in SOM. Those dynamic associations can fix molecular arrangements inducing water repellency and increase kinetic barriers for the release and uptake of water and nutrients from aged soil.
Human pharmaceuticals are extensively studied and assessed before marketing approval. Since 2006, this also includes an assessment of environmental risks. In the European Union, this is based on the guideline on the environmental risk assessment of medicinal products for human use (EMEA/CHMP/SWP/4447/00 corr 2), which is currently under revision. For Germany, the German Environment Agency (UBA) is tasked with the evaluation of environmental risks of human pharmaceuticals. Applicants seeking approval of medicinal products need to submit fate and effect data, in case predicted environmental concentrations (PECs) exceed 10 ng/L in surface waters, or the substance is of specific concern through its mode of action or physico-chemical characteristics.Over the last decade, this regulatory work resulted in an internal agency database containing effect data on approximately 300 active pharmaceutical ingredients (APIs). A considerable part of this data is currently not publicly available due to property rights held by the respective applicants. The database was evaluated to draw conclusions on how the current assessment approach may be improved.The evaluation of aquatic effect data shows considerable variation in ecotoxic effect concentrations, but supports the current use of 10 ng/L as PEC action limit. For endocrine-active substances and antibiotics, a clear sensitivity profile was observed, which allows a more targeted assessment in the future. The conclusions drawn from terrestrial effect data are less clear, as the database itself is biased because information is only available for substances with high sorption. Further adaptations of the terrestrial assessment strategy, including action triggers, appear necessary. Fate data show a high persistence of many APIs: approximately 43% of all APIs are classified as very persistent; 12% of these show DT50 values in a range where abiotic or biotic degradation is not expected.Overall, the evaluation has shown that improvements of the current guideline are possible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.