Upcycling of low intrinsic viscosity (IV) poly(ethylene terephthalate) (PET) grades, such as bottle‐ or recycled grades, by a reactive foam extrusion process, provides an appropriate alternative to high pricing, high IV grades commonly used for foaming applications. However, the drawback of bottle‐grade PET foams is its flame retardant (FR) performance. In this study, pyromellitic dianhydride was used as a chain extender to foam bottle‐grade PET. The influence of different FRs, containing halogenated (HFR) and four different phosphorous‐based types, on the processability and final foam properties was investigated. HFR showed better processability to achieve proper foams with fine morphology compared to P‐based FRs, where the FR content was adjusted between 2 and 5 wt%. However, HFR exhibited lower FR performance by cone calorimeter testing compared to the P‐based FRs and the commercial reference foam Kerdyn. Nonetheless, all of the FRs can only improve the time to ignition of the neat PET foams while the other values depend on the specific type of FR. In addition, all FR foams have improved mechanical properties more than twice in comparison to the neat PET foam.
Phosphorus-containing flame retardants synthesized from renewable resources have had a lot of impact in recent years. This article outlines the synthesis, characterization and evaluation of these compounds in polyesters and epoxy resins. The different approaches used in producing biobased flame retardant polyesters and epoxy resins are reported. While for the polyesters biomass derived compounds usually are phosphorylated and melt blended with the polymer, biobased flame retardants for epoxy resins are directly incorporated into the polymer structure by a using a phosphorylated biobased monomer or curing agent. Evaluating the efficiency of the flame retardant composites is done by discussing results obtained from UL94 vertical burning, limiting oxygen index (LOI) and cone calorimetry tests. The review ends with an outlook on future development trends of biobased flame retardant systems for polyesters and epoxy resins.
Novel polymeric acrylate-based flame retardants (FR 1–4) containing two phosphorus groups in different chemical environments were synthesized in three steps and characterized via nuclear magnetic resonance (NMR) spectroscopy, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and mass spectrometry (MS). Polylactic acid (PLA) formulations with the synthesized compounds were investigated to evaluate the efficiency of these flame retardants and their mode of action by using TGA, UL94, and cone calorimetry. In order to compare the results a flame retardant polyester containing only one phosphorus group (ItaP) was also investigated in PLA regarding its flame inhibiting effect. Since the fire behavior depends not only on the mode of action of the flame retardants but also strongly on physical phenomena like melt dripping, the flame retardants were also incorporated into PLA with higher viscosity. In the UL94 vertical burning test setup, 10% of the novel flame retardants (FR 1–4) is sufficient to reach a V-0 rating in both PLA types, while a loading of 15% of ItaP is not enough to reach the same classification. Despite their different structure, TGA and cone calorimetry results confirmed a gas phase mechanism mainly responsible for the highly efficient flame retardancy for all compounds. Finally, cone calorimetry tests of the flame retardant PLA with two heat fluxes showed different flame inhibiting efficiencies for different fire scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.