Exhibiting sexually dimorphic roles in mice, BRWD1 is essential for proper meiotic chromosome condensation and telomere structure during oogenesis and for haploid-specific gene transcription during postmeiotic sperm differentiation.
BACKGROUND AND PURPOSE Diffuse intrinsic pontine gliomas are inoperable high-grade gliomas with a median survival of less than 1 year. Convection-enhanced delivery is a promising local drug-delivery technique that can bypass the BBB in diffuse intrinsic pontine glioma treatment. Evaluating tumor response is critical in the assessment of convection-enhanced delivery of treatment. We proposed to determine the potential of 3D multivoxel 1H-MR spectroscopy to evaluate convection-enhanced delivery treatment effect in these tumors. MATERIALS AND METHODS We prospectively analyzed 3D multivoxel 1H-MR spectroscopy data for 6 patients with nonprogressive diffuse intrinsic pontine gliomas who received convection-enhanced delivery treatment of a therapeutic antibody (Phase I clinical trial NCT01502917). To compare changes in the metabolite ratios with time, we tracked the metabolite ratios Cho/Cr and Cho/NAA at several ROIs: normal white matter, tumor within the convection-enhanced delivery infusion site, tumor outside of the infused area, and the tumor average. RESULTS TherewasacomparativedecreaseinbothCho/CrandCho/NAAmetaboliteratiosatthetumorconvection-enhanceddelivery site versus tumor outside the infused area. We used MR spectroscopy voxels with dominant white matter as a reference. The difference between changes in metabolite ratios became more prominent with increasing time after convection-enhanced delivery treatment. CONCLUSIONS The comparative change in metabolite ratios between the convection-enhanced delivery site and the tumor site outside the infused area suggests that multivoxel 1H-MR spectroscopy, in combination with other imaging modalities, may provide a clinical tool to accurately evaluate local tumor response after convection-enhanced delivery treatment.
The mechanisms by which commensal organisms affect human physiology remain poorly understood. Lectins are non-enzymatic carbohydrate binding proteins that all organisms employ as part of establishing a niche, evading host-defenses and protecting against pathogens. Although lectins have been extensively studied in plants, bacterial pathogens and human immune cells for their role in disease pathophysiology and as therapeutics, the role of bacterial lectins in the human microbiome is largely unexplored. Here we report on the characterization of a lectin produced by a common human associated bacterium that interacts with myeloid cells in the blood and intestine. In mouse and cell-based models, we demonstrate that this lectin induces distinct immunologic responses in peripheral and intestinal leukocytes and that these responses are specific to monocytes, macrophages and dendritic cells. Our analysis of human microbiota sequencing data reveal thousands of unique sequences that are predicted to encode lectins, many of which are highly prevalent in the human microbiome yet completely uncharacterized. Based on the varied domain architectures of these lectins we predict they will have diverse effects on the human host. The systematic investigation of lectins in the human microbiome should improve our understanding of human health and provide new therapeutic opportunities.
Calciphylaxis, or calcific uremic arteriopathy (CUA), is characterized by metastatic calcification in the media of small arteries and arterioles leading to cutaneous necrosis. It is most commonly seen in patients with end stage renal disease who have elevated serum calcium × phosphorus (Ca × P) product. Normalization of Ca × P product is considered paramount in the prevention and treatment of CUA. We describe a novel presentation of CUA in which a Stage-5 CKD patient developed signs and symptoms of CUA immediately after initiation of hemodialysis (HD). We postulate that an influx of calcium from the dialysate into the patient's blood, in addition to correction of her acidosis, led to abundant substrate in a favorable milieu for Ca-P complex formation at the time of her first HD session. Our case is the first reported case of HD associated iatrogenic acute CUA. To avoid this complication, we should maintain adequate hydration,use lower calcium dialysate, and avoid vitamin D analogues and calcium-containing medications when initiating HD in patients with high Ca-P product. Since sodium thiosulfate is known to prevent precipitation of Ca-P complexes, its empiric use during initial HD treatments may be effective in preventing CUA, a potentially fatal disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.