AbstractThe behavior of composite beads of Zea mays rachis and sodium alginate (AL) for Pb (II) adsorption was studied. The Zea mays rachis–sodium alginate was prepared and characterized. The IR spectra showed interactions of the functional groups and the metal ions after adsorption. The kinetic data were fitted to the pseudo-first- and pseudo-second-order models, the maximum adsorption capacity was 60 mg/g for Pb (II), and the isotherm data were best adjusted to the Freundlich model, indicating that the adsorbent is heterogeneous. The thermodynamic study shows that the process is physisorption. The service time of columns increases as the height of columns increases, and this behavior was attributed to the active sites available in the columns. The initial concentration of Pb (II) had a significant effect on the breakthrough curves. As the concentration increases, the saturation time decreases. The material was regenerated four times (adsorption–desorption cycles), without a significant change in the removal efficiencies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.