Increased peripheral insulin is associated with reduced Alzheimer disease (AD)-related brain atrophy, cognitive dysfunction, and dementia severity, suggesting that insulin signaling may play a role in the pathophysiology of AD.
Recent post-mortem studies reported 22–37% of patients with multiple system atrophy can develop cognitive impairment. With the aim of identifying associations between cognitive impairment including memory impairment and α-synuclein pathology, 148 consecutive patients with pathologically proven multiple system atrophy were reviewed. Among them, 118 (79.7%) were reported to have had normal cognition in life, whereas the remaining 30 (20.3%) developed cognitive impairment. Twelve of them had pure frontal-subcortical dysfunction, defined as the presence of executive dysfunction, impaired processing speed, personality change, disinhibition or stereotypy; six had pure memory impairment; and 12 had both types of impairment. Semi-quantitative analysis of neuronal cytoplasmic inclusions in the hippocampus and parahippocampus revealed a disease duration-related increase in neuronal cytoplasmic inclusions in the dentate gyrus and cornu ammonis regions 1 and 2 of patients with normal cognition. In contrast, such a correlation with disease duration was not found in patients with cognitive impairment. Compared to the patients with normal cognition, patients with memory impairment (pure memory impairment: n = 6; memory impairment + frontal-subcortical dysfunction: n = 12) had more neuronal cytoplasmic inclusions in the dentate gyrus, cornu ammonis regions 1–4 and entorhinal cortex. In the multiple system atrophy mixed pathological subgroup, which equally affects the striatonigral and olivopontocerebellar systems, patients with the same combination of memory impairment developed more neuronal inclusions in the dentate gyrus, cornu ammonis regions 1, 2 and 4, and the subiculum compared to patients with normal cognition. Using patients with normal cognition (n = 18), frontal-subcortical dysfunction (n = 12) and memory impairment + frontal-subcortical dysfunction (n = 18), we further investigated whether neuronal or glial cytoplasmic inclusions in the prefrontal, temporal and cingulate cortices or the underlying white matter might affect cognitive impairment in patients with multiple system atrophy. We also examined topographic correlates of frontal-subcortical dysfunction with other clinical symptoms. Although no differences in neuronal or glial cytoplasmic inclusions were identified between the groups in the regions examined, frontal release signs were found more commonly when patients developed frontal-subcortical dysfunction, indicating the involvement of the frontal–subcortical circuit in the pathogenesis of frontal-subcortical dysfunction. Here, investigating cognitive impairment in the largest number of pathologically proven multiple system atrophy cases described to date, we provide evidence that neuronal cytoplasmic inclusion burden in the hippocampus and parahippocampus is associated with the occurrence of memory impairment in multiple system atrophy. Further investigation is necessary to identify the underlying pathological basis of frontal-subcortical dysfunction in multiple system atrophy.
Corticobasal degeneration typically progresses gradually over 5-7 years from onset till death. Fulminant corticobasal degeneration cases with a rapidly progressive course were rarely reported (RP-CBD). This study aimed to investigate their neuropathological characteristics. Of the 124 autopsy-confirmed corticobasal degeneration cases collected from 14 centres, we identified 6 RP-CBD cases (4.8%) who died of advanced disease within 3 years of onset. These RP-CBD cases had different clinical phenotypes including rapid global cognitive decline (N = 2), corticobasal syndrome (N = 2) and Richardson's syndrome (N = 2). We also studied four corticobasal degeneration cases with an average disease duration of 3 years or less, who died of another unrelated illness (Intermediate-CBD). Finally, we selected 12 age-matched corticobasal degeneration cases out of a cohort of 110, who had a typical gradually progressive course and reached advanced clinical stage (Endstage-CBD). Quantitative analysis showed high overall tau burden (p = 0.2) and severe nigral cell loss (p = 0.47) in both the RP-CBD and End-stage-CBD groups consistent with advanced pathological changes, while the Intermediate-CBD group (mean disease duration = 3 years) had milder changes than End-stage-CBD (p < 0.05). These findings indicated that RP-CBD cases had already developed advanced pathological changes as those observed in End-stage-CBD cases (mean disease duration = 6.7 years), but within a significantly shorter duration (2.5 years; p < 0.001). Subgroup analysis was performed to investigate the cellular patterns of tau aggregates in the anterior frontal cortex and caudate by comparing neuronal-toastrocytic plaque ratios between six RP-CBD cases, four Intermediate-CBD and 12 age-matched End-stage-CBD. Neuronalto-astrocytic plaque ratios of Intermediate-CBD and End-stage-CBD, but not RP-CBD, positively correlated with disease duration in both the anterior frontal cortex and caudate (p = 0.02). In contrast to the predominance of astrocytic plaques we previously reported in preclinical asymptomatic corticobasal degeneration cases, neuronal tau aggregates predominated in RP-CBD exceeding those in Intermediate-CBD (anterior frontal cortex: p < 0.001, caudate: p = 0.001) and End-stage-CBD (anterior frontal cortex: p = 0.03, caudate: p = 0.01) as demonstrated by its higher neuronal-to-astrocytic plaque ratios in both anterior frontal cortex and caudate. We did not identify any difference in age at onset, any pathogenic tau mutation or concomitant pathologies that could have contributed to the rapid progression of these RP-CBD cases. Mild TDP-43 pathology was observed in three RP-CBD cases. All RP-CBD cases were men. The MAPT H2 haplotype, known to be protective, was identified in one RP-CBD case (17%) and 8 of the matched End-stage-CBD cases (67%). We conclude that RP-CBD is a distinct aggressive variant of corticobasal degeneration with characteristic neuropathological substrates resulting in a fulminant disease process as evident both clinically and pathological...
2019) Neuropathology and Applied Neurobiology 45, 635-654 Clinical, neuropathological and genetic features of Lewy body dementias Lewy body dementias are the second most common neurodegenerative dementias after Alzheimer's disease and include dementia with Lewy bodies and Parkinson's disease dementia. They share similar clinical and neuropathological features but differ in the time of dementia and parkinsonism onset. Although Lewy bodies are their main pathological hallmark, several studies have shown the emerging importance of Alzheimer's disease pathology. Clinical amyloid-b imaging using Pittsburgh Compound B (PiB) supports neuropathological studies which found that amyloid-b pathology is more common in dementia with Lewy bodies than in Parkinson's disease dementia. Nevertheless, other co-occurring pathologies, such as cerebral amyloid angiopathy, TDP-43 pathology and synaptic pathology may also influence the development of neurodegeneration and dementia. Recent genetic studies demonstrated an important role of APOE genotype and other genes such as GBA and SNCA which seem to be involved in the pathophysiology of Lewy body dementias. The aim of this article is to review the main clinical, neuropathological and genetic aspects of dementia with Lewy bodies and Parkinson's disease dementia. This is particularly relevant as future management for these two conditions may differ.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.