BackgroundAutism spectrum disorder (ASD) currently affects nearly 1 in 160 children worldwide. In over two-thirds of evaluations, no validated diagnostics are used and gold standard diagnostic tools are used in less than 5% of evaluations. Currently, the diagnosis of ASD requires lengthy and expensive tests, in addition to clinical confirmation. Therefore, fast, cheap, portable, and easy-to-administer screening instruments for ASD are required. Several studies have shown that children with ASD have a lower preference for social scenes compared with children without ASD. Based on this, eye-tracking and measurement of gaze preference for social scenes has been used as a screening tool for ASD. Currently available eye-tracking software requires intensive calibration, training, or holding of the head to prevent interference with gaze recognition limiting its use in children with ASD.MethodsIn this study, we designed a simple eye-tracking algorithm that does not require calibration or head holding, as a platform for future validation of a cost-effective ASD potential screening instrument. This system operates on a portable and inexpensive tablet to measure gaze preference of children for social compared to abstract scenes. A child watches a one-minute stimulus video composed of a social scene projected on the left side and an abstract scene projected on the right side of the tablet’s screen. We designed five stimulus videos by changing the social/abstract scenes. Every child observed all the five videos in random order. We developed an eye-tracking algorithm that calculates the child’s gaze preference for the social and abstract scenes, estimated as the percentage of the accumulated time that the child observes the left or right side of the screen, respectively. Twenty-three children without a prior history of ASD and 8 children with a clinical diagnosis of ASD were evaluated. The recorded video of the child´s eye movement was analyzed both manually by an observer and automatically by our algorithm.ResultsThis study demonstrates that the algorithm correctly differentiates visual preference for either the left or right side of the screen (social or abstract scenes), identifies distractions, and maintains high accuracy compared to the manual classification. The error of the algorithm was 1.52%, when compared to the gold standard of manual observation.DiscussionThis tablet-based gaze preference/eye-tracking algorithm can estimate gaze preference in both children with ASD and without ASD to a high degree of accuracy, without the need for calibration, training, or restraint of the children. This system can be utilized in low-resource settings as a portable and cost-effective potential screening tool for ASD.
Aim: Various individual, relational, and sociocultural variables have been identified as determinants of sexual responding, but these have rarely been investigated in non-Western cultures that are characterized by sexual conservatism. We aimed to explore the role of socioeconomic status and religion, sexual double standards, erotophobia-erotophilia, sexual dysfunctional beliefs, and relationship satisfaction to explain sexual function and satisfaction in Ecuador. Method: 599 participants (431 women and 159 men) completed an online survey.
Most children with autism spectrum disorder (ASD), in resource-limited settings (RLS), are diagnosed after the age of four. Our work confirmed and extended results of Pierce that eye tracking could discriminate between typically developing (TD) children and those with ASD. We demonstrated the initial 15 s was at least as discriminating as the entire video. We evaluated the GP-MCHAT-R, which combines the first 15 s of manually-coded gaze preference (GP) video with M-CHAT-R results on 73 TD children and 28 children with ASD, 36–99 months of age. The GP-MCHAT-R (AUC = 0.89 (95%CI: 0.82–0.95)), performed significantly better than the MCHAT-R (AUC = 0.78 (95%CI: 0.71–0.85)) and gaze preference (AUC = 0.76 (95%CI: 0.64–0.88)) alone. This tool may enable early screening for ASD in RLS.
Autism Spectrum Disorders (ASD) are characterized by a deficit in social integration, language development, and restricted interests. ASD is defined as a prevalence development life disability. However, children who are early diagnosed and intervention improve long-term prognosis. This project proposes to detect autism in children at a first level (preclinical stage) using a tool "eye tracking" highly cost-effective and embedded in a tablet. The results obtained with this system have been compared with the outcomes of the Modified Autism in Children M-CHAT questionnaire.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.