These data demonstrate that Siglec-8 functions uniquely as an activating receptor on IL-5-primed eosinophils through a novel pathway involving regulation of β-integrin-dependent adhesion, NADPH oxidase, and a subset of protein kinases.
Therapeutic payloads can be targeted selectively to eosinophils and malignant mast cells by exploiting this Siglec-8 endocytic pathway.
Human siglecs are a family of 14 sialic acid-binding proteins, most of which are expressed on subsets of immune cells where they regulate immune responses. Siglec-8 is expressed selectively on human allergic inflammatory cells-primarily eosinophils and mast cells-where engagement causes eosinophil apoptosis and inhibits mast cell mediator release. Evidence supports a model in which human eosinophils and mast cells bind to Siglec-8 sialoglycan ligands on inflammatory target tissues to resolve allergic inflammation and limit tissue damage. To identify Siglec-8-binding sialoglycans from human airways, proteins extracted from postmortem human trachea were resolved by size-exclusion chromatography and composite agarose-acrylamide gel electrophoresis, blotted and probed by Siglec-8-Fc blot overlay. Three size classes of Siglec-8 ligands were identified: 250 kDa, 600 kDa and 1 MDa, each of which was purified by affinity chromatography using a recombinant pentameric form of Siglec-8. Proteomic mass spectrometry identified all size classes as the proteoglycan aggrecan, a finding validated by immunoblotting. Glycan array studies demonstrated Siglec-8 binding to synthetic glycans with a terminal Neu5Acα2-3(6-sulfo)-Gal determinant, a quantitatively minor terminus on keratan sulfate (KS) chains of aggrecan. Treating human tracheal extracts with sialidase or keratanase eliminated Siglec-8 binding, indicating sialylated KS chains as Siglec-8-binding determinants. Treating human tracheal histological sections with keratanase also completely eliminated the binding of Siglec-8-Fc. Finally, Siglec-8 ligand purified from human trachea extracts induced increased apoptosis of freshly isolated human eosinophils in vitro. We conclude that sialylated KS proteoglycans are endogenous human airway ligands that bind Siglec-8 and may regulate allergic inflammation.
The historical focus on protein–protein interactions in biological systems, at the expense of attention given to interactions between other classes of molecules, has overlooked important and clinically relevant processes and points of potential clinical intervention. For example, the significance of protein–carbohydrate interactions, especially in the regulation of immune responses, has recently received greater recognition and appreciation. This review discusses several ways by which cell-surface lectin–glycan interactions can modulate eosinophil function, particularly at the levels of eosinophil recruitment and survival, and how such interactions can be exploited therapeutically. A primary focus is on discoveries concerning Siglec-8, a glycan-binding protein selectively expressed on human eosinophils, and its closest functional paralog in the mouse, Siglec-F. Recent advances in the synthesis of polymeric ligands, the identification of physiological ligands for Siglec-8 and Siglec-F in the airway, and the determination of the basis of glycan ligand discrimination of Siglec-8 are discussed. Important similarities and differences between these siglecs are outlined. Eosinophil expression of additional glycan-binding proteins or their glycan ligands, including interactions involving members of the selectin, galectin, and siglec families, is summarized. The roles of these molecules in eosinophil recruitment, survival, and inflammation are described. Finally, the modulation of these interactions and potential therapeutic exploitation of glycan-binding proteins and their ligands to ameliorate eosinophil-associated diseases are considered.
Sialic acid-binding immunoglobulin-like lectin (Siglec)-8 is a human cell surface protein expressed exclusively on eosinophils, mast cells, and basophils that, when engaged, induces eosinophil apoptosis and inhibits mast cell mediator release. This makes Siglec-8 a promising therapeutic target to treat diseases involving these cell types. However, preclinical studies of Siglec-8 targeting in vivo are lacking because this protein is only found in humans, apes, and some monkeys. Therefore, we have developed a mouse strain in which SIGLEC8 transcription is activated by Cre recombinase and have crossed this mouse with the eoCre mouse to achieve eosinophil-specific expression. We confirmed that Siglec-8 is expressed exclusively on the surface of mature eosinophils in multiple tissues at levels comparable to those on human blood eosinophils. Following ovalbumin sensitization and airway challenge, Siglec-8 knock-in mice generated a pattern of allergic lung inflammation indistinguishable from that of littermate controls, suggesting that Siglec-8 expression within the eosinophil compartment does not alter allergic eosinophilic inflammation. Using bone marrow from these mice, we demonstrated that, during maturation, Siglec-8 expression occurs well before the late eosinophil developmental marker C-C motif chemokine receptor 3, consistent with eoCre expression. Antibody ligation of the receptor induces Siglec-8 endocytosis and alters the phosphotyrosine profile of these cells, indicative of productive signaling. Finally, we demonstrated that mouse eosinophils expressing Siglec-8 undergo cell death when the receptor is engaged, further evidence that Siglec-8 is functional on these cells. These mice should prove useful to investigate Siglec-8 biology and targeting in vivo in a variety of eosinophilic disease models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.