SummaryPathogenicity Islands play a major role in the pathogenesis of infections by Salmonella enterica. The molecular function of Salmonella Pathogenicity Island 4 (SPI4) is largely unknown, but recent work indicated a role of SPI4 for Salmonella pathogenesis in certain animal models. We analysed the virulence functions of SPI4 and observed that SPI4 is contributing to intestinal inflammation in a mouse model. On a cellular level, SPI4 mediates adhesion to epithelial cells. We demonstrate the function of SPI4-encoded proteins as a type I secretion system (T1SS) and identify SiiE as the substrate protein of the T1SS. SiiE is secreted into the culture medium but mediates contact-dependent adhesion to epithelial cell surfaces. SiiE is a very large non-fimbrial adhesin of 600 kDa and consists of 53 repeats of Ig domains. Our study describes the first T1SS-secreted protein that functions as a non-fimbrial adhesin in binding to eukaryotic cells. The SPI4-encoded T1SS and SiiE might functionally resemble the type I fimbrial adhesins.
SummaryThe intracellular pathogen, Salmonella enterica , translocates type III effectors across its vacuolar membrane into host cells. Herein we describe a new Salmonella effector, PipB2, which has sequence similarity to another type III effector, PipB. In phagocytic cells, PipB2 localizes to the Salmonella -containing vacuole (SCV) and tubular extensions from the SCV, Salmonella -induced filaments (Sifs). We used the specific targeting of PipB2 in macrophages to characterize Sifs in phagocytic cells for the first time. In epithelial cells, PipB2 has a unique localization pattern, localizing to SCVs and Sifs and additionally to vesicles at the periphery of infected cells. We further show that the N-terminal 225-amino-acid residues of PipB2 are sufficient for type III translocation and association with SCVs and Sifs, but not peripheral vesicles. Subcellular fractionation demonstrated that both PipB and PipB2 associate with host cell membranes and resist extraction by high salt, high pH and to a significant extent, non-ionic detergent. Furthermore, PipB and PipB2 are enriched in detergent-resistant microdomains (DRMs), also known as lipid rafts, present on membranes of SCVs and Sifs. The enrichment of Salmonella effectors in DRMs on these intracellular membranes probably permits specific interactions with host cell molecules that are concentrated in these signalling platforms.
SummaryInvasion is an important microbial virulence strategy to overcome the barrier formed by polarized epithelial cells. Salmonella enterica is a food-borne pathogen that deploys a type III secretion system for the manipulation of the actin cytoskeleton and to trigger internalization into epithelial cells. Here we show that this function is not sufficient to enter polarized cells and report that penetration of epithelia from the luminal side requires both the type III secretion system and novel virulence functions conferred by Salmonella pathogenicity island 4. Salmonella pathogenicity island 4 encodes a type I secretion system for the giant non-fimbrial adhesin SiiE that mediates intimate contact of Salmonella to microvilli on the apical membrane. Mutant strains lacking SiiE fail to invade polarized cells, to destroy epithelial barrier functions and to efface the apical brush border. Deletion analyses of repetitive domains in SiiE indicate that the large size of the adhesin is of functional importance. Our observations demonstrate that efficient penetration of epithelial barriers requires the cooperative activity of two Salmonella pathogenicity islands encoding different secretion systems. These findings underline the role of the epithelial brush border and reveal a new mechanism used by bacterial pathogens to overcome this barrier.
The virulence of Salmonella enterica critically depends on the functions of two type III secretion systems (T3SS), with the Salmonella pathogenicity island 1 (SPI1)-encoded T3SS required for host cell invasion and the SPI2-T3SS enabling Salmonella to proliferate within host cells. A further T3SS is required for the assembly of the flagella. Most serovars of Salmonella also possess a lipopolysaccharide with a complex O-antigen (OAg) structure. The number of OAg units attached to the core polysaccharide varies between 16 and more than 100 repeats, with a trimodal distribution. This work investigated the correlation of the OAg length with the functions of the SPI1-T3SS and the SPI2-T3SS. We observed that the number of repeats of OAg units had no effect on bacterial motility. The interaction of Salmonella with epithelial cells was altered if the OAg structure was changed by mutations in regulators of OAg. Strains defective in synthesis of very long or long and very long OAg species showed increased translocation of a SPI1-T3SS effector protein and increased invasion. Invasion of a strain entirely lacking OAg was increased, but this mutant strain also showed increased adhesion. In contrast, translocation of a SPI2-T3SS effector protein and intracellular replication were not affected by modification of the OAg length. Mutant strains lacking the entire OAg or long and very long OAg were highly susceptible to complement killing. These observations indicate that the architecture of the outer membrane of Salmonella is balanced to permit sufficient T3SS function but also to confer optimal protection against antimicrobial defense mechanisms.Salmonella enterica is a remarkable pathogen with strategies for adaptation to different lifestyles in the environment as well as within various host organisms. The requirements for life within the host can vary dramatically, for example, after transition from extracellular life within the intestine to an intracellular life within a special organelle formed inside infected host cells (reviewed in reference 23). The presence of an outer membrane is an important structural feature that enables commensal as well as pathogenic bacteria to adapt to the intestine and to resist bile salts and various molecules of the host innate immune system (44). Of specific importance is the lipopolysaccharide (LPS), the major constituent of the outer leaflet of the outer membrane. LPS is composed of (i) the lipid A portion, consisting of acyl chains linked to phosphorylated N-acetylglucosamine; (ii) the inner and outer core moieties, consisting of rather conserved sugars; and (iii) a highly variable O antigen (OAg). The LPS of S. enterica serovar Typhimurium and several other serovars has special characteristics, with extreme heterogeneity in the length of the OAg repeats. LPS species with a short OAg (S-OAg) consisting of about 16 repeats of OAg units can be found. In addition, LPS species with long and very long OAg (L-OAg and VL-OAg, respectively) are present, containing about 35 and more than 100 repeat...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.