BackgroundThe present study investigated the prevalence of Borrelia burgdorferi sensu lato (s.l.) genospecies in Ixodes ricinus ticks collected in Hanover, Northern Germany, in 2010. At the same time the study served as fifth-year-follow-up study for data comparison with 2005.MethodsA total of 2100 questing ticks were collected and analysed by quantitative real-time PCR (qPCR) with subsequent species differentiation via Reverse Line Blot and Sanger sequencing. Simultaneously, results obtained in 2010 were compared to infection rates from 2005 to evaluate the development of B. burgdorferi s.l. infection rates in Hanoverian ticks.ResultsOverall, 22.7% (476/2,100) of collected ticks were tested positive for B. burgdorferi s.l. infections. Adult ticks showed an infection rate of 33.3% (124/372), subdivided into 29.6% (58/196) positive males and 37.5% (66/176) positive females. Nymph and larvae infection rates were found to be 20.3% (344/1,697) and 25.8% (8/31), respectively. Species identification was successful for 59.2% (282/476) of positive ticks with B. afzelii as the most frequently detected genospecies, followed by B. garinii (including B. bavariensis) and B. spielmanii. B. burgdorferi sensu stricto (s.s.), B. bissettii, B. valaisiana and B. lusitaniae were also identified. Significant differences concerning seasonal fluctuations as well as local differences were observed. Comparing infection rates of Hanoverian ticks between years, a significant increase (P = 0.002) could be observed for larvae with 1.7% positives (2/60) in 2005 and 25.8% positives (8/31) in 2010. In the latter year, coinfections with Borrelia and Rickettsiales were detected in a total of 7.8% (163/2,100) of collected ticks. Of these, 7.3% (153/2,100) were coinfected with Rickettsia spp., 0.3% (7/2,100) with A. phagocytophilum and 0.1% (3/2,100) were coinfected with all three pathogens. Between years 2005 and 2010, no statistically significant differences in coinfection rates were found.ConclusionsComparing B. burgdorferi s.l. infections in Hanoverian I. ricinus ticks in 2010 with data from 2005, a statistically significant increase of infected larvae was noted, whereas the other stages revealed no statistically significant differences. Whether the increased larvae infection rate is an isolated event or results from factual circumstances, e.g. increasing effectiveness of transovarial transmission due to unknown factors, has to be evaluated in further studies.
BackgroundLyme borreliosis caused by spirochetes of the Borrelia burgdorferi (sensu lato) complex is still the most common tick-borne disease in Europe, posing a considerable threat to public health. The predominant vector in Europe is the widespread hard tick Ixodes ricinus, which also transmits the relapsing fever spirochete B. miyamotoi as well as pathogenic Rickettsiales (Anaplasma phagocytophilum, Rickettsia spp.). To assess the public health risk, a long-term monitoring of tick infection rates with the named pathogens is indispensable.MethodsThe present study is the first German 10-year follow-up monitoring of tick infections with Borrelia spp. and co-infections with Rickettsiales. Furthermore, a specific Reverse Line Blot (RLB) protocol for detection of B. miyamotoi and simultaneous differentiation of B. burgdorferi (s.l.) geno-species was established.ResultsOverall, 24.0% (505/2100) of ticks collected in the city of Hanover were infected with Borrelia. In detail, 35.4% (203/573) of adult ticks [38.5% females (111/288) and 32.3% males (92/285)] and 19.8% nymphs (302/1527) were infected, representing consistent infection rates over the 10-year monitoring period. Geno-species differentiation using RLB determined B. miyamotoi in 8.9% (45/505) of positive ticks. Furthermore, a significant decrease in B. afzelii and B. spielmanii infection rates from 2010 to 2015 was observed. Co-infections with Rickettsia spp. and A. phagocytophilum increased between 2010 and 2015 (7.3 vs 10.9% and 0.3 vs 1.1%, respectively).ConclusionsLong-term monitoring is an essential part of public health risk assessment to capture data on pathogen occurrence over time. Such data will reveal shifts in pathogen geno-species distribution and help to answer the question whether or not climate change influences tick-borne pathogens.
Background: Ixodes ricinus constitutes the main European vector tick for the Lyme borreliosis pathogen Borrelia burgdorferi (sensu lato), the relapsing fever borrelia Borrelia miyamotoi, as well as Anaplasma phagocytophilum and several Rickettsia species. Under laboratory conditions, a transovarial transmission to the next tick generation is described for Rickettsia spp. and Borrelia spp., especially regarding B. miyamotoi, whereas the efficiency of transovarial transfer under field conditions is largely unstudied. Methods: In order to better estimate the potential infection risk by tick larvae for humans and animals, 1500 I. ricinus larvae from 50 collected "nests" (larvae adhering to the flag in a clumped manner) were individually examined for Borrelia, Rickettsia and A. phagocytophilum DNA using quantitative real-time PCR (qPCR). Results: Thirty-nine of 50 nests each (78.0%, 95% CI: 64.0-88.5%) were positive for Borrelia spp. and Rickettsia spp. DNA, and in three nests (6.0%, 95% CI: 1.3-16.5%) A. phagocytophilum DNA was detected. Overall, DNA from at least one pathogen could be detected in 90.0% (45/50, 95% CI: 78.2-96.7%) of the nests. Of the 1500 larvae, 137 were positive for Borrelia spp. DNA (9.1%, 95% CI: 7.7-10.7%), 341 for Rickettsia spp. DNA (22.7%, 95% CI: 20.6-24.9%) and three for A. phagocytophilum DNA (0.2%, 95% CI: 0-0.6%). Quantity of Borrelia spp. and Anaplasma spp. DNA in positive larvae was low, with 2.7 × 10 0 Borrelia 5S-23S gene copies and 2.4 × 10 1 A. phagocytophilum msp2/p44 gene copies detected on average, while Rickettsia-positive samples contained on average 5.4 × 10 2 gltA gene copies. Coinfections were found in 66.0% (33/50, 95% CI: 51.2-78.8%) of the nests and 8.6% (38/443, 95% CI: 6.1-11.6%) of positive larvae. In fact, larvae had a significantly higher probability of being infected with Borrelia spp. or Rickettsia spp. when both pathogens were present in the nest. Conclusions: This study provides evidence for transovarial transmission of Rickettsia spp. and Borrelia spp. in I. ricinus under field conditions, possibly facilitating pathogen persistence in the ecosystem and reducing the dependence on
To obtain initial data on Borrelia burgdorferi sensu lato (Spirochaetales: Spirochaetaceae) in Ixodes ricinus (Ixodida: Ixodidae) ticks in Hamburg, Germany, 1400 questing ticks were collected by flagging at 10 different public recreation areas in 2011 and analysed using probe-based quantitative real-time polymerase chain reaction. The overall rate of infection with B. burgdorferi s.l. was 34.1%; 30.0% of adults were infected (36.7% of females and 26.0% of males), as were 34.5% of nymphs. Significant differences in tick infection rates were observed between the spring and summer/autumn months, as well as among sampling locations. Borrelia genospecies identification by reverse line blotting was successful in 43.6% of positive tick samples. The most frequent genospecies was Borrelia garinii/Borrelia bavariensis, followed by Borrelia afzelii, Borrelia valaisiana, B. burgdorferi sensu stricto, Borrelia spielmanii, Borrelia bissettii and Borrelia lusitaniae. Based on previously published data, co-infection of Borrelia and Rickettsiales spp. was determined in 25.8% of ticks. Overall, 22.9% of ticks were co-infected with Rickettsia spp. (Rickettsiales: Rickettsiaceae), 1.7% with Anaplasma phagocytophilum (Rickettsiales: Anaplasmataceae), and 1.2% with both pathogens. Study results show a high prevalence of Borrelia-positive ticks in recreation areas in the northern German city of Hamburg and the potential health risk to humans in these areas should not be underestimated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.