Nutritional imbalance underlies many disease processes but can be very beneficial in certain cases; for instance, the antiepileptic action of a high fat and low carbohydrate ketogenic diet. Besides this therapeutic feature it is not clear how this abundant fat supply may affect homeostasis, leading to side effects. A ketogenic diet is used as anti-seizure therapy i.a. in tuberous sclerosis patients, but its impact on concomitant tumor growth is not known. To examine this we have evaluated the growth of renal lesions in Eker rats (Tsc2+/−) subjected to a ketogenic diet for 4, 6 and 8 months. In spite of existing opinions about the anticancer actions of a ketogenic diet, we have shown that this anti-seizure therapy, especially in its long term usage, leads to excessive tumor growth. Prolonged feeding of a ketogenic diet promotes the growth of renal tumors by recruiting ERK1/2 and mTOR which are associated with the accumulation of oleic acid and the overproduction of growth hormone. Simultaneously, we observed that Nrf2, p53 and 8-oxoguanine glycosylase α dependent antitumor mechanisms were launched by the ketogenic diet. However, the pro-cancerous mechanisms finally took the ascendency by boosting tumor growth.
AMP-activated kinase (AMPK) acts as the intracellular ATP depletion sensor, which detects and limits increases in the AMP/ATP ratio. AMPK may be significantly activated under stress conditions that deplete cellular ATP levels such as ischemia/hypoxia or glucose deprivation. Recent studies strongly suggest that AMPK participates in autophagy regulation, but it is not known whether AMPK activated by ischemia regulates autophagy in astrocytes and the consequence of autophagy activation in ischemic astrocytes are unclear. We have investigated the contribution of AMPK to autophagy activation in rat primary astrocyte cultures subjected to ischemia-simulating conditions (combined oxygen glucose deprivation, OGD) and its potential effects on astrocyte damage induced by OGD (1-12 h). The evidence supports the conclusion that AMPK activation at early stages of OGD is involved in induction of protective autophagy in astrocytes. Inhibition of AMPK, either by siAMPKα1 or by compound C, significantly attenuated the expression of autophagy-related proteins and decrease of astrocyte viability following OGD. The findings provide additional data about the role of AMPK in ischemic astrocytes and downstream responses that may be involved in OGD-induced protective autophagy.
Recent studies have implicated the role of autophagy in brain ischemia pathophysiology. However, it remains unclear whether autophagy activation is protective or detrimental to astrocytes undergoing ischemic stress. This study evaluated the influence of ischemia-induced autophagy on cell death and the course of intrinsic and extrinsic apoptosis in primary cultures of rat cortical astrocytes exposed to combined oxygen-glucose deprivation (OGD). The role of autophagy was assessed by pharmacological inhibition with 3-methyladenine (3-MA). Cell viability was evaluated by measuring LDH release and through the use of the alamarBlue Assay. Apoptosis and necrosis were determined by fluorescence microscopy after Hoechst 33,342 and propidium iodide staining, respectively. The levels of apoptosis-related proteins were analyzed by immunoblotting. The downregulation of autophagy during OGD resulted in decreased cell viability and time-dependent changes in levels of apoptosis and necrosis. After short-term OGD (1, 4 h), cells treated with 3-MA showed higher level of cleaved caspase 3 compared with control cells. This result was consistent with an evaluation of apoptotic cell number by fluorescence microscopy. However, after prolonged exposure to OGD (8, 24 h), the number of apoptotic astrocytes (microscopically evaluated) did not differ or was even lower (as marked by caspase 3) in the presence of the autophagy inhibitor in comparison to the control. A higher level of necrosis was observed in 3-MA-treated cells compared to non-treated cells after 24 h OGD. The downregulation of autophagy caused time-dependent changes in both extrinsic (cleaved caspase 8, TNFα) and intrinsic (cleaved caspase 9) apoptotic pathways. Our results strongly indicate that the activation of autophagy in astrocytes undergoing ischemic stress is an adaptive mechanism, which allows for longer cell survival by delaying the initiation of apoptosis and necrosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.