The heating and cooling of buildings with large-scale ceiling systems nowadays is widely used in traditional as well as in new, low-energy buildings. This type of system is being employed in a building of the Civil Engineering Faculty (FCE), Slovak Technical University, in Bratislava. The building’s refurbishment in 2010 included the complete replacement of the building’s envelope. The replacement is a lightweight facade with a high percentage of transparent construction. Due to the differences between the type of envelope and the heating system, the operation of the heating system frequently causes thermal discomfort, especially during warm spring or autumn days. The aim of the measurements was to evaluate the control of the operation of the heating output, the appropriateness of the location of sensors measuring the outdoor temperature and possible improvement of the current control system to improve the heating system’s quality.
Our national husbandry belongs among economies with the biggest energy consumption per an inhabitant. Slovak Republic consumes for making of product’s unit approximately twice more energy than the average in forward European countries. Such a big reserves, that we have to achieve in the area of effective increasing of energy utilization are not possible only by administrative way, but by establishing of new technical solutions into a general practice too. In a part of large-area industry operations, the new technical solution lies in the combination heating system by radiant ceiling panels with ventilation by air handling unit with integrated device for heat recovery, which considerably reduces the operation costs. Paper shows also the basic principles of heat transfer, main construction of the radiant ceiling panel and finally stated objective its advantages and drawbacks.
The aim of this study is to design industrial ventilation in the production hall. With respect to the many parameters which influence the appropriate proposal of industrial ventilation that need to be considered, there is a good chance for miscalculations when design the industrial ventilation. Especially when the heat loads from technology threaten the stability of construction of the building. There are two different ways of solution of aeration in the aluminium plant. There is only a natural ventilation using outside air in case of melting of aluminium and an adiabatic cooling for air inlet combined with natural ventilation. The results and practice has shown, that to use only an outside air is not sufficient and the temperature in the hall is really very high. Adiabatic cooling decreases the air inlet temperature in the production hall and improves the working conditions. A thermovision mapping of the technology was used prior to start the CFD modelling. The simulation emphasize the important effect of design and location of different elements on the functionality of ventilation proposal.
This article focuses on the investigation of the dynamic thermal barrier (TB) and dynamic thermal resistance (DTR) of the building envelope. The aim is to analyze the DTR as a function of the temperature change of the heat transfer medium supplied to the dynamic TB layer and to determine the energy potential of several materially different fragments of the building envelope. The functions of TB and DTR depend on the uniform and continuous maintenance of temperature in a given layer of the building structure. The methodology is based on the analysis and synthesis of thermal resistance calculation, wall heating, and computer simulation. The research results show that the relatively low mean temperature of the heat transfer medium of approximately θm = 17 °C delivered to the TB layer represents RDTR = up to 30 ((m2·K)/W) for an equivalent dynamic thermal insulation thickness of 1000 mm for a required standard resistance of RSTANDARD = 6.50 ((m2·K)/W) of the individual fragments analyzed with static thermal insulation of 65 to 210 mm. The energy potential of a thermal barrier (TB) represents an increase of approximately 500% in the thermal resistance and up to 1500% in the thickness of the dynamic thermal insulation. Further research on the dynamic thermal barrier and verification of the results of the parametric study will continue with comprehensive computer simulations and experimental measurements on the test cell.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.