Novel linear carbohydrate-derived [m,n]-polyurethanes are successfully prepared using D-mannitol as renewable and low cost starting material. The key comonomer, 1,6-di-O-phenylcarbonyl-2,3,4,5-tetra-O-methyl-D-mannitol is polymerized with a diamine synthesized from D-mannitol or with alkylenediamines. These polymerization reactions afford, respectively, a [6,6]-polyurethane entirely based on a carbohydrate derivative or [m,n]-polyurethanes constituted by a poly-O-methyl substituted unit alternating with a polymethylene chain. All these polymers are stereoregular, as result of the C 2 axis of symmetry of mannitol. The optically active polyur-ethanes are characterized by standard methods (FTIR, RMN, GPC, TGA, and DSC). Thus, GPC analysis reveals weight-average molecular weights between 18,000 and 25,000 Da. Thermal studies (DSC) indicate that the polymers obtained are amorphous materials with T g values dependent on the structure and chain length of the diamine constituent. V
Bovine viral diarrhea virus (BVDV) belongs to the Pestivirus genus (Flaviviridae). In spite of the availability of vaccines, the virus is still causing substantial financial losses to the livestock industry. In this context, the use of antiviral agents could be an alternative strategy to control and reduce viral infections. The viral RNA-dependent RNA polymerase (RdRp) is essential for the replication of the viral genome and constitutes an attractive target for the identification of antiviral compounds. In a previous work, we have identified potential molecules that dock into an allosteric binding pocket of BVDV RdRp via a structure-based virtual screening approach. One of them, N-(2-morpholinoethyl)-2-phenylquinazolin-4-amine [1, 50% effective concentration (EC50) = 9.7 ± 0.5 μM], was selected to perform different chemical modifications. Among 24 derivatives synthesized, eight of them showed considerable antiviral activity. Molecular modeling of the most active compounds showed that they bind to a pocket located in the fingers and thumb domains in BVDV RdRp, which is different from that identified for other non-nucleoside inhibitors (NNIs) such as thiosemicarbazone (TSC). We selected compound 2-[4-(2-phenylquinazolin-4-yl)piperazin-1-yl]ethanol (1.9; EC50 = 1.7 ± 0.4 μM) for further analysis. Compound 1.9 was found to inhibit the in vitro replication of TSC-resistant BVDV variants, which carry the N264D mutation in the RdRp. In addition, 1.9 presented adequate solubility in different media and a high-stability profile in murine and bovine plasma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.