Dyskerin is an evolutionarily conserved nucleolar protein implicated in a wide range of fundamental biological roles, including telomere maintenance and ribosome biogenesis. Germline mutations of DKC1, the human gene encoding dyskerin, cause the hereditary disorders known as X-linked dyskeratosis congenita (X-DC). Moreover, dyskerin is upregulated in several cancers. Due to the pleiotropic functions of dyskerin, the X-DC clinical features overlap with those of both telomeropathies and ribosomopathies. In this paper, we evaluate the telomerase-independent effects of dyskerin depletion on cellular physiology by using inducible DCK1 knockdown. This system allows the downregulation of DKC1 expression within a short timeframe. We report that, in these cellular systems, dyskerin depletion induces the accumulation of unfolded/misfolded proteins in the endoplasmic reticulum, which in turn induces the activation of the PERK branch of the unfolded protein response. We also demonstrate that the PERK-eIF2a-ATF4-CHOP signaling pathway, activated by dyskerin downregulation, triggers a functional autophagic flux through the inhibition of the PI3K/AKT/mTOR pathway. By revealing a novel unpredicted connection between the loss of dyskerin, autophagy and UPR, our results establish a firm link between the lowering of dyskerin levels and the activation of the ER stress response, that plays a key role in the pathogenesis of several diseases.
The invasive macroalga Caulerpa cylindracea has spread widely in the Mediterranean Sea, becoming a favorite food item for native fish for reasons yet unknown. By using a combination of behavioral, morphological, and molecular approaches, herein we provide evidence that the bisindole alkaloid caulerpin, a major secondary metabolite of C. cylindracea, significantly increases food intake in the model fish Danio rerio, influencing the regulation of genes involved in the orexigenic pathway. In addition, we found that the compound improves fish reproductive performance by affecting the hypothalamus–pituitary–gonadal axis. The obtained results pave the way for the possible valorization of C. cylindracea as a sustainable source of a functional feed additive of interest to face critical challenges both in aquaculture and in human nutrition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.