Achieving a fast initial growth is crucial for legumes because grasses grow more rapidly and compete much better with forbs. In a pot experiment with a nutrient-deficient soil, we added nitrogen (N), phosphorus (P) and N + P to pure and mixed stands of Lotus tenuis and Festuca arundinacea and investigated the effects of on plant growth, nutrient uptake and symbiotic associations with arbuscular mycorrhizae and rhizobia. Plant yield, N and P acquisition, mycorrhizal colonisation, rhizobial nodulation and root length were measured and root diameter and root surface area were calculated after two harvests. Species responded differently to specific nutrients when grown pure or mixed. Comparing pure with mixed stands in soils fertilised with P and N + P, L. tenuis showed decreased shoot and particularly root biomass, whereas F. arundinacea showed increases in both biomasses. This suggests that the competitiveness of the grass with the legume increased upon P and N + P addition. In mixed stands, F. arundinacea produced 51–64% of the total shoot biomass and 69–74% of the total root biomass with P and N + P, respectively. Root length and root surface area were greater and the roots thinner in F. arundinacea than in L. tenuis. Addition of P and N + P increased rhizobial nodulation in legume roots but decreased mycorrhizal colonisation in both plants. Supply of N does not necessarily favour grasses, whereas P supply favours legumes. Optimisation of P nutrition might help to maximise N inputs into grasslands by symbiotic N-fixation and decrease inputs of inorganic N by fertilisation.
Habitat loss and fragmentation have led to grassland bird declines, with ground nesters particularly vulnerable. Roadsides could provide habitat, although their suitability depends on several roadside and field characteristics. Vegetation structure determines foraging and nesting site availability. In addition, road delimits sharp edges where the activity of nest predators is usually higher, whereas herbaceous vegetation determines ground nest concealment. Trees could provide lookouts to predators, and modified habitat and woodlands in surrounding fields could offer additional resources to predators. Our objective was to assess habitat suitability for ground nester birds in roadsides belonging to one modified grassland of the Argentine Pampas. We surveyed birds (90 plots) and monitored artificial nests (60 plots) in different road types: unpaved, paved of one-lane per side, and paved of two-lanes per side. Within each road type, we evaluated the relationship that ground nesters abundance had with vegetation structure of roadsides and surrounding fields. In addition, we related predation of artificial nests with the proximity to the road, roadside vegetation, and modified land and woodlands of surrounding fields. We made 2832 records of 84 species using roadsides, including 1083 records of 13 ground nesting species. Abundance of ground nesters increased with tall grass cover of roadsides and decreased with the number of native trees within roadsides. Roughly half (31/60) of the artificial nests were predated and 82.6% of the identified egg-marks were of mammal teeth. Nest predation decreased with nest proximity to the road. Our results emphasize the importance of tall grass cover of roadsides for the conservation of ground nesting species, and the necessity of monitoring natural nests in order to clarify the effect of trees, proximity to the road, and other environmental variables on nest success.
Worldwide, the areas covered by native forests are declining while those of tree plantations are increasing. This has raised the question of whether tree plantations are able to preserve native forest species. In Argentina, the main native forests of the Pampas region, called talares, are endangered and their disappearance is imminent. Although exotic tree plantations are increasing in this region, their role in maintaining native bird diversity has not been studied in Argentine Pampas. We compared the bird community attributes and vegetation structure of talares native forest with those of tree plantations. Plantations exhibited markedly lower bird richness than talares, up to 80% lower, and all forest-dependent bird species were absent in plantations. Talares and plantations differed also in some aspects of vegetation structure, which usually are key determinants of bird abundance. Given the extreme importance of talares for forest birds, this bird community will be deeply affected if it continues to decline, as nearby plantations do not offer suitable habitat. In order to maintain the bird diversity of talares, and probably the diversity of other unstudied taxa related to them, we recommend management actions that should be applied urgently in these endangered forests of the Argentine Pampas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.