Poly(ethylene glycol) diacrylate (PEGDA) hydrogels are extensively used as scaffolds in tissue engineering. The ability to spatially control hydrogel properties is critical for designing scaffolds that direct cell behavior and tissue regeneration. To this end, we have recently developed a polymerization technique, perfusion‐based frontal photopolymerization, to generate tunable gradients in PEG hydrogels. This study explores the effects of polymerization conditions on the velocity of the propagating front and its influence on gradients in hydrogel swelling. Alterations in photoinitiator perfusion rate result in the largest variations in frontal velocity and in the magnitude of the swelling gradient among all polymerization conditions investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.