The genetic elements required to tune gene expression are partitioned in active and repressive nuclear condensates. Chromatin compartments include transcriptional clusters whose dynamic establishment and functioning depends on multivalent interactions occurring among transcription factors, cofactors and basal transcriptional machinery. However, how chromatin players contribute to the assembly of transcriptional condensates is poorly understood. By interrogating the effect of
KMT2D
(also known as
MLL4
) haploinsufficiency in Kabuki Syndrome, we found that MLL4 contributes to the assembly of transcriptional condensates through liquid-liquid phase separation. MLL4 loss-of-function (LoF) impaired Polycomb-dependent chromatin compartmentalization, altering nuclear architecture. By releasing the nuclear mechanical stress through the inhibition of the mechano-sensor ATR, we re-established the mechano-signaling of mesenchymal stem cells (MSCs) and their commitment towards chondrocytes both in vitro and in vivo. This study supports the notion that in Kabuki Syndrome the haploinsufficiency of MLL4 causes an altered functional partitioning of chromatin, which determines the architecture and mechanical properties of the nucleus.
Glioblastoma (GBM) is a common and deadly form of brain tumor in adults. Dysregulated metabolism in GBM offers an opportunity to deploy metabolic interventions as precise therapeutic strategies. To identify the molecular drivers and the modalities by which different molecular subgroups of GBM exploit metabolic rewiring to sustain tumor progression, we interrogated the transcriptome, the metabolome, and the glycoproteome of human subgroup-specific GBM sphere-forming cells (GSCs). L-fucose abundance and core fucosylation activation were elevated in mesenchymal (MES) compared to proneural (PN) GSCs; this pattern was retained in subgroup-specific xenografts and in subgroup-affiliated human patient samples. Genetic and pharmacological inhibition of core fucosylation significantly reduced tumor growth in MES GBM preclinical models. Liquid chromatography-mass spectrometry (LC-MS)-based glycoproteomic screening indicated that most MES-restricted core fucosylated proteins are involved in therapeutically relevant GBM pathological processes, such as extracellular matrix interaction, cell adhesion, and integrin-mediated signaling. Selective L-fucose accumulation in MES GBMs was observed using pre-clinical minimally-invasive positron emission tomography (PET), implicating this metabolite as a potential subgroup-restricted biomarker. Overall, these findings indicate that L-fucose pathway activation in MES GBM is a subgroup-specific dependency that could provide diagnostic markers and actionable therapeutic targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.