Smartphones, smartwatches, fitness trackers, and ad-hoc wearable devices are being increasingly used to monitor human activities. Data acquired by the hosted sensors are usually processed by machine-learning-based algorithms to classify human activities. The success of those algorithms mostly depends on the availability of training (labeled) data that, if made publicly available, would allow researchers to make objective comparisons between techniques. Nowadays, there are only a few publicly available data sets, which often contain samples from subjects with too similar characteristics, and very often lack specific information so that is not possible to select subsets of samples according to specific criteria. In this article, we present a new dataset of acceleration samples acquired with an Android smartphone designed for human activity recognition and fall detection. The dataset includes 11,771 samples of both human activities and falls performed by 30 subjects of ages ranging from 18 to 60 years. Samples are divided in 17 fine grained classes grouped in two coarse grained classes: one containing samples of 9 types of activities of daily living (ADL) and the other containing samples of 8 types of falls. The dataset has been stored to include all the information useful to select samples according to different criteria, such as the type of ADL performed, the age, the gender, and so on. Finally, the dataset has been benchmarked with four different classifiers and with two different feature vectors. We evaluated four different classification tasks: fall vs. no fall, 9 activities, 8 falls, 17 activities and falls. For each classification task, we performed a 5-fold cross-validation (i.e., including samples from all the subjects in both the training and the test dataset) and a leave-one-subject-out cross-validation (i.e., the test data include the samples of a subject only, and the training data, the samples of all the other subjects). Regarding the classification tasks, the major findings can be summarized as follows: (i) it is quite easy to distinguish between falls and ADLs, regardless of the classifier and the feature vector selected. Indeed, these classes of activities present quite different acceleration shapes that simplify the recognition task; (ii) on average, it is more difficult to distinguish between types of falls than between types of activities, regardless of the classifier and the feature vector selected. This is due to the similarity between the acceleration shapes of different kinds of falls. On the contrary, ADLs acceleration shapes present differences except for a small group. Finally, the evaluation shows that the presence of samples of the same subject both in the training and in the test datasets, increases the performance of the classifiers regardless of the feature vector used. This happens because each human subject differs from other subjects in performing activities even if she shares with them the same physical characteristics.
Smartphones, smartwatches, fitness trackers, and ad-hoc wearable devices are being increasingly used to monitor human activities. Data acquired by the hosted sensors are usually processed by machine-learning-based algorithms to classify human activities. The success of those algorithms mostly depends on the availability of training (labeled) data that, if made publicly available, would allow researchers to make objective comparisons between techniques. Nowadays, publicly available data sets are few, often contain samples from subjects with too similar characteristics, and very often lack of specific information so that is not possible to select subsets of samples according to specific criteria. In this article, we present a new smartphone accelerometer dataset designed for activity recognition. The dataset includes 11,771 activities performed by 30 subjects of ages ranging from 18 to 60 years. Activities are divided in 17 fine grained classes grouped in two coarse grained classes: 9 types of activities of daily living (ADL) and 8 types of falls. The dataset has been stored to include all the information useful to select samples according to different criteria, such as the type of ADL performed, the age, the gender, and so on. Finally, the dataset has been benchmarked with two different classifiers and with different configurations. The best results are achieved with k-NN classifying ADLs only, considering personalization, and with both windows of 51 and 151 samples.
Recently, a significant amount of literature concerning machine learning techniques has focused on automatic recognition of activities performed by people. The main reason for this considerable interest is the increasing availability of devices able to acquire signals which, if properly processed, can provide information about human activities of daily living (ADL). The recognition of human activities is generally performed by machine learning techniques that process signals from wearable sensors and/or cameras appropriately arranged in the environment. Whatever the type of sensor, activities performed by human beings have a strong subjective characteristic that is related to different factors, such as age, gender, weight, height, physical abilities, and lifestyle. Personalization models have been studied to take into account these subjective factors and it has been demonstrated that using these models, the accuracy of machine learning algorithms can be improved. In this work we focus on the recognition of human activities using signals acquired by the accelerometer embedded in a smartphone. The contributions of this research are mainly three. A first contribution is the definition of a clear validation model that takes into account the problem of personalization and which thus makes it possible to objectively evaluate the performances of machine learning algorithms. A second contribution is the evaluation, on three different public datasets, of a personalization model which considers two aspects: the similarity between people related to physical aspects (age, weight, and height) and similarity related to intrinsic characteristics of the signals produced by these people when performing activities. A third and last contribution is the development of a personalization model that considers both the physical and signal similarities. The experiments show that the employment of personalization models improves, on average, the accuracy, thus confirming the soundness of the approach and paving the way for future investigations on this topic.
Life expectancy keeps growing and, among elderly people, accidental falls occur frequently. A system able to promptly detect falls would help in reducing the injuries that a fall could cause. Such a system should meet the needs of the people to which is designed, so that it is actually used. In particular, the system should be minimally invasive and inexpensive. Thanks to the fact that most of the smartphones embed accelerometers and powerful processing unit, they are good candidates both as data acquisition devices and as platforms to host fall detection systems. For this reason, in the last years several fall detection methods have been experimented on smartphone accelerometer data. Most of them have been tuned with simulated falls because, to date, datasets of real-world falls are not available. This article evaluates the effectiveness of methods that detect falls as anomalies. To this end, we compared traditional approaches with anomaly detectors. In particular, we experienced the kNN and the SVM methods using both the one-class and two-classes configurations. The comparison involved three different collections of accelerometer data, and four different data representations. Empirical results demonstrated that, in most of the cases, falls are not required to design an effective fall detector.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.