On the basis of the results obtained with pilot studies conducted in vitro on human low density lipoprotein (LDL) and on cell cultures (Caco-2), which had indicated the ability of certain molecules present in olive oil to inhibit prooxidative processes, an in vivo study was made of laboratory rabbits fed special diets. Three different diets were prepared: a standard diet for rabbits (diet A), a standard diet for rabbits modified by the addition of 10% (w/w) extra virgin olive oil (diet B), a modified standard diet for rabbits (diet C) differing from diet B only in the addition of 7 mg kg(-1) of oleuropein. A series of biochemical parameters was therefore identified, both in the rabbit plasma and the related isolated LDL, before and after Cu-induced oxidation. The following, in particular, were selected: (i) biophenols, vitamins E and C, uric acid, and total, free, and ester cholesterol in the plasma; (ii) proteins, triglycerides, phospholipids, and total, free, and ester cholesterol in the native LDL (for the latter, the dimensions were also measured); (iii) lipid hydroperoxides, aldehydes, conjugated dienes, and relative electrophoretic mobility (REM) in the oxidized LDL (ox-LDL). In an attempt to summarize the results obtained, it can be said that this investigation has not only verified the antioxidant efficacy of extra virgin olive oil biophenols and, in particular, of oleuropein, but has also revealed a series of thus far unknown effects of the latter on the plasmatic lipid situation. In fact, the addition of oleuropein in diet C increased the ability of LDL to resist oxidation (less conjugated diene formation) and, at the same time, reduced the plasmatic levels of total, free, and ester cholesterol (-15, -12, and -17%, respectively), giving rise to a redistribution of the lipidic components of LDL (greater phospholipid and cholesterol amounts) with an indirect effect on their dimensions (bigger by about 12%).
Experimental and clinical evidence suggest that oxidative stress causes cellular damage, leading to functional alterations of the tissue. Free radicals may thus play an important role in the pathogenesis of a number of human diseases. Among pro-oxidant agents, oxidized LDL lead to the production of cytotoxic reactive species, e.g., lipoperoxides, causing tissue injury and various subsequent pathologies including intestinal diseases. Thus, to analyze the oxidative damage induced by oxidized LDL to intestinal mucosa, we evaluated morphological and functional changes induced in the human colon adenocarcinoma cell line, Caco-2. In addition, we examined the protective effects exerted by tyrosol, 2-(4-hydroxyphenyl)ethanol, the major phenolic compound present in olive oil. Caco-2 cell treatment (24 and/or 48 h) with oxidized LDL (0.2 g/L) resulted in cytostatic and cytotoxic effects characterized by a series of morphological and functional alterations: membrane damage, modifications of cytoskeleton network, microtubular disorganization, loss of cell-cell and cell-substrate contacts, cell detachment and cell death. The oxidized LDL-induced alterations in Caco-2 cells were almost completely prevented by tyrosol which was added 2 h before and present during the treatments. Our results suggest that some biophenols, such as those contained in olive oil, may counteract the reactive oxygen metabolite-mediated cellular damage and related diseases, by improving in vivo antioxidant defenses.
Olive oil contains several phenolic compounds with antioxidant activity, whose levels depend strongly on the kind of cultivar grown, fruit ripening effects and the oil extraction process. Therefore, the beneficial effects exerted by olive oil consumption on the resistance of low density lipoproteins (LDLs) to oxidation depend not only on an increased intake of mono-unsaturated fatty acids (e.g. oleate) which are less prone to oxidation, but also phenolic antioxidants. The aim of this study was to analyze in vitro effects exerted on the oxidative modification of Cu-stimulated human LDL by two olive oil biophenols, i.e. 3,4-dihydroxyphenylethanol-elenolic acid (3,4-DHPEA-EA) and protocatecuic acid. These compounds have not been investigated in as much detail as the better-known olive oil biophenols - such as tyrosol (p-HPEA), o-coumaric acid, vanillic acid, caffeic acid, oleuropein and 3,4-dihydroxyphenylethanol (3,4-DHPEA). Modification of LDL was tested by measuring the formation of intermediate and end products of lipid peroxidation such as conjugated dienes, lipid hydroperoxides, cholesterol and cholesteryl ester oxides, as well as studying the decrease in oxidizable substrates like polyunsaturated fatty acids. In addition, the increase in LDL negative charges was evaluated. The results demonstrate the two-tested olive oil biophenols show high antioxidant activities. In particular, protocatecuic acid and 3,4-DHPEA-EA show an antioxidant activity comparable with that of caffeic acid, oleuropein and 3,4-DHPEA. They are not only able to retard lipid peroxidation, but also to reduce the extent of its activity.
Virgin olive oil stability to autoxidation is mainly due to phenolic compounds naturally occurring in it, but contrasting data have been published on the effectiveness of the same antioxidant compounds. With thermogravimetric analysis (TGA) it is possible to have an estimation of oil resistance to oxidation, having a measure of weight gain percent due to reaction of sample with oxygen during the oxidation, and of initial and final oxidation temperatures. The following samples were examined: virgin olive oil, olive oil, and olive oil spiked with different amounts of some antioxidants. Tested phenols were p-HPEA, 3,4-DHPEA, 3,4-DHPEA-EA, caffeic acid, oleuropein, and, moreover, BHT and BHA. Data showed that natural antioxidant addition (especially oleuropein, 3,4-DHPEA, and 3,4-DHPEA-EA) could extend the olive oil shelf life and could protect oil from decomposition naturally occurring during thermal treatments (such as cooking process). Keywords: Biophenols; olive oil stability; lipid autoxidation; thermogravimetric analysis
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.