Explainable Artificial Intelligence (XAI) methods are typically deployed to explain and debug black-box machine learning models. However, most proposed XAI methods are black-boxes themselves and designed for images. Thus, they rely on visual interpretability to evaluate and prove explanations. In this work, we apply XAI methods previously used in the image and text-domain on time series. We present a methodology to test and evaluate various XAI methods on time series by introducing new verification techniques to incorporate the temporal dimension. We further conduct preliminary experiments to assess the quality of selected XAI method explanations with various verification methods on a range of datasets and inspecting quality metrics on it. We demonstrate that in our initial experiments, SHAP works robust for all models, but others like DeepLIFT, LRP, and Saliency Maps work better with specific architectures.
In computer-based literary analysis different types of features are used to characterize a text. Usually, only a single feature value or vector is calculated for the whole text. In this paper, we combine automatic literature analysis methods with an effective visualization technique to analyze the behavior of the feature values across the text. For an interactive visual analysis, we calculate a sequence of feature values per text and present them to the user as a characteristic fingerprint. The feature values may be calculated on different hierarchy levels, allowing the analysis to be done on different resolution levels. A case study shows several successful applications of our new method to known literature problems and demonstrates the advantage of our new visual literature fingerprinting.
Today, online stores collect a lot of customer feedback in the form of surveys, reviews, and comments. This feedback is categorized and in some cases responded to, but in general it is underutilizedeven though customer satisfaction is essential to the success of their business. In this paper, we introduce several new techniques to interactively analyze customer comments and ratings to determine the positive and negative opinions expressed by the customers. First, we introduce a new discrimination-based technique to automatically extract the terms that are the subject of the positive or negative opinion (such as price or customer service) and that are frequently commented on. Second, we derive a Reverse-Distance-Weighting method to map the attributes to the related positive and negative opinions in the text. Third, the resulting high-dimensional feature vectors are visualized in a new summary representation that provides a quick overview. We also cluster the reviews according to the similarity of the comments. Special thumbnails are used to provide insight into the composition of the clusters and their relationship. In addition, an interactive circular correlation map is provided to allow analysts to detect the relationships of the comments to other important attributes and the scores. We have applied these techniques to customer comments from real-world online stores and product reviews from web sites to identify the strength and problems of different products and services, and show the potential of our technique.
Fig. 1. A cluster identification task was performed and evaluated in four different visualization design spaces. Two screen-based methods, namely a scatterplot matrix (a) and a 3D scatterplot in a cube (b), and two visualizations in a VR environment: a 3D scatterplot on a virtual table (c) and a room-sized scatterplot (d). Gray lines emphasize transitions between visualization design spaces.Abstract-Recent developments in technology encourage the use of head-mounted displays (HMDs) as a medium to explore visualizations in virtual realities (VRs). VR environments (VREs) enable new, more immersive visualization design spaces compared to traditional computer screens. Previous studies in different domains, such as medicine, psychology, and geology, report a positive effect of immersion, e.g., on learning performance or phobia treatment effectiveness. Our work presented in this paper assesses the applicability of those findings to a common task from the information visualization (InfoVis) domain. We conducted a quantitative user study to investigate the impact of immersion on cluster identification tasks in scatterplot visualizations. The main experiment was carried out with 18 participants in a within-subjects setting using four different visualizations, (1) a 2D scatterplot matrix on a screen, (2) a 3D scatterplot on a screen, (3) a 3D scatterplot miniature in a VRE and (4) a fully immersive 3D scatterplot in a VRE. The four visualization design spaces vary in their level of immersion, as shown in a supplementary study. The results of our main study indicate that task performance differs between the investigated visualization design spaces in terms of accuracy, efficiency, memorability, sense of orientation, and user preference. In particular, the 2D visualization on the screen performed worse compared to the 3D visualizations with regard to the measured variables. The study shows that an increased level of immersion can be a substantial benefit in the context of 3D data and cluster detection.
Finding suitable, less space consuming views for a document's main content is crucial to provide convenient access to large document collections on display devices of different size. We present a novel compact visualization which represents the document's key semantic as a mixture of images and important key terms, similar to cards in a top trumps game. The key terms are extracted using an advanced text mining approach based on a fully automatic document structure extraction. The images and their captions are extracted using a graphical heuristic and the captions are used for a semi-semantic image weighting. Furthermore, we use the image color histogram for classification and show at least one representative from each non-empty image class. The approach is demonstrated for the IEEE InfoVis publications of a complete year. The method can easily be applied to other publication collections and sets of documents which contain images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.