Purpose: Glioblastoma (GBM) is the most common primary brain tumor. The identification of blood biomarkers reflecting the tumor status represents a major unmet need for optimal clinical management of patients with GBM. Their high number in body fluids, their stability, and the presence of many tumor-associated proteins and RNAs make extracellular vesicles potentially optimal biomarkers. Here, we investigated the potential role of plasma extracellular vesicles from patients with GBM for diagnosis and follow-up after treatment and as a prognostic tool. Experimental Design: Plasma from healthy controls (n ¼ 33), patients with GBM (n ¼ 43), and patients with different central nervous system malignancies (n ¼ 25) were collected. Extracellular vesicles were isolated by ultracentrifugation and characterized in terms of morphology by transmission electron microscopy, concentration, and size by nanoparticle tracking analysis, and protein composition by mass spectrometry. An orthotopic mouse model of human GBM confirmed human plasma extracellular vesicle quantifications. Associations between plasma extracellular vesicle concentration and clinicopathologic features of patients with GBM were analyzed. All statistical tests were two-sided. Results: GBM releases heterogeneous extracellular vesicles detectable in plasma. Plasma extracellular vesicle concentration was higher in GBM compared with healthy controls (P < 0.001), brain metastases (P < 0.001), and extra-axial brain tumors (P < 0.001). After surgery, a significant drop in plasma extracellular vesicle concentration was measured (P < 0.001). Plasma extracellular vesicle concentration was also increased in GBM-bearing mice (P < 0.001). Proteomic profiling revealed a GBM-distinctive signature. Conclusions: Higher extracellular vesicle plasma levels may assist in GBM clinical diagnosis: their reduction after GBM resection, their rise at recurrence, and their protein cargo might provide indications about tumor, therapy response, and monitoring.
BackgroundChloride channels are physiologically involved in cell division and motility. Chloride intracellular channel 1 (CLIC1) is overexpressed in a variety of human solid tumors compared with normal tissues, suggesting a potential involvement of CLIC1 in the regulation of tumorigenesis. This led us to investigate the role of CLIC1 in gliomagenesis.MethodsWe used the neurosphere system to isolate stem/progenitor cells from human glioblastomas (GBMs). CLIC1 targeting in GBM neurospheres was achieved by both lentiviral-mediated short-hairpin RNA transduction and CLIC1 antibody treatment, and its effect on stem-like properties was analyzed in vitro by proliferation and clonogenic assays and in vivo by orthotopic injection in immunocompromised mice. Channel activity was studied by perforated patch clamp technique. Differences in expression were analyzed by analysis of variance with Tamhane’s multiple comparison test. Kaplan–Meier analyses and log-rank test were used to assess survival. All statistical tests were two-sided.ResultsCLIC1 was statistically significantly overexpressed in GBMs compared with normal brain tissues (P < .001) with a better survival of patients with CLIC1 low-expressing tumors (CLIC1low vs CLIC1high survival: χ2 = 74.35; degrees of freedom = 1; log-rank P < .001). CLIC1 was variably expressed in patient-derived GBM neurospheres and was found enriched in the stem/progenitor compartment. CLIC1 silencing reduced proliferative (P < .01), clonogenic (P < .01), and tumorigenic capacity (P < .05) of stem/progenitor cells. The reduction of CLIC1 chloride currents with a specific CLIC1 antibody mirrored the biological effects of CLIC1 silencing in GBM patient–derived neurospheres.ConclusionsReduced gliomagenesis after CLIC1 targeting in tumoral stem/progenitor cells and the finding that CLIC1 expression is inversely associated with patient survival suggest CLIC1 as a potential target and prognostic biomarker.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.