The nervous system transmits signals between neurons via neurotransmitter release during synaptic vesicle fusion. In order to observe neurotransmitter uptake and release from individual presynaptic terminals directly, we designed fluorescent false neurotransmitters as substrates for the synaptic vesicle monoamine transporter. Using these probes to image dopamine release in the striatum, we made several observations pertinent to synaptic plasticity. We found that the fraction of synaptic vesicles releasing neurotransmitter per stimulus was dependent on the stimulus frequency. A kinetically distinct "reserve" synaptic vesicle population was not observed under these experimental conditions. A frequency-dependent heterogeneity of presynaptic terminals was revealed that was dependent in part on D2 dopamine receptors, indicating a mechanism for frequency-dependent coding of presynaptic selection.
Brain-derived neurotrophic factor (BDNF) plays an important role in synaptic plasticity in the hippocampus, but the mechanisms involved are not fully understood. The neurotrophin couples synaptic activation to changes in gene expression underlying long term potentiation and short term plasticity. Here we show that BDNF acutely up-regulates GluR1, GluR2, and GluR3 ␣-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor subunits in 7-day tropomyosin-related kinase in vitro cultured hippocampal neurons. The increase in GluR1 and GluR2 protein levels in developing cultures was impaired by K252a, a Trk inhibitor, and by translation (emetine and anisomycin) and transcription (␣-amanitine and actinomycin D) inhibitors. Accordingly, BDNF increased the mRNA levels for GluR1 and GluR2 subunits. Biotinylation studies showed that stimulation with BDNF for 30 min selectively increased the amount of GluR1 associated with the plasma membrane, and this effect was abrogated by emetine. Under the same conditions, BDNF induced GluR1 phosphorylation on Ser-831 through activation of protein kinase C and Ca 2؉ -calmodulin-dependent protein kinase II. Chelation of endogenous extracellular BDNF with TrkB-IgG selectively decreased GluR1 protein levels in 14-day in vitro cultures of hippocampal neurons. Moreover, BDNF promoted synaptic delivery of homomeric GluR1 AMPA receptors in cultured organotypic slices, by a mechanism independent of NMDA receptor activation. Taken together, the results indicate that BDNF up-regulates the protein levels of AMPA receptor subunits in hippocampal neurons and induces the delivery of AMPA receptors to the synapse.Neurotrophins are essential for the development of the vertebrate nervous system, modulate synaptic function, and play an important role in synaptic plasticity (1, 2). Brain-derived neurotrophic factor (BDNF) 3 has been implicated in activitydependent synaptic plasticity, particularly in long term potentiation (LTP) induced by high frequency stimulation. Accordingly, LTP is impaired in the hippocampal CA1 region of animals deficient in BDNF, but it can be rescued by supplying the neurotrophin (3-5). Chelation of endogenous BDNF also prevents the induction of LTP by theta burst stimulation and reduces late phase LTP induced by high frequency stimulation (6, 7). Furthermore, the late phase LTP induced by tetanic stimulation was not observed in slices from BDNF knock-out mice and was also abrogated when TrkB receptors were blocked (8). Taken together, the available evidences point to a direct role of BDNF in the early and late phases of LTP.Binding of BDNF to TrkB receptors is followed by activation of intracellular signaling pathways, including the Ras/extracellular signal-regulated protein kinase, phospholipase C␥ (PLC␥), phosphatidylinositol-3-kinase/Akt, and Src pathways (9 -11). TrkB receptors are located on axon terminals and in the post-synaptic density of glutamatergic synapses (12-14), but whether the effects of BDNF on synaptic plasticity are mediated by pre-and/or post-sy...
Neurotransmission at dopaminergic synapses has been studied with techniques that provide high temporal resolution but cannot resolve individual synapses. To elucidate the spatial dynamics and heterogeneity of individual dopamine boutons, we developed fluorescent false neurotransmitter 200 (FFN200), a vesicular monoamine transporter 2 (VMAT2) substrate that is the first probe to selectively trace monoamine exocytosis in both neuronal cell culture and brain tissue. By monitoring electrically-evoked Ca2+ transients with GCaMP3 and FFN200 release simultaneously, we find that only a small fraction of dopamine boutons that exhibit Ca2+ influx engage in exocytosis, a result confirmed with activity-dependent loading of the endocytic probe FM 1-43. Thus, only a low fraction of striatal dopamine axonal sites with uptake-competent VMAT2 vesicles are capable of transmitter release. This is consistent with the presence of functionally “silent” dopamine vesicle clusters and represents a first report suggestive of presynaptically silent neuromodulatory synapses.
We recently introduced fluorescent false neurotransmitters (FFNs) as optical tracers that enable the visualization of neurotransmitter release at individual presynaptic terminals. Here, we describe a pH-responsive FFN probe, FFN102, which as a polar dopamine transporter substrate selectively labels dopamine cell bodies and dendrites in ventral midbrain and dopaminergic synaptic terminals in dorsal striatum. FFN102 exhibits greater fluorescence emission in neutral than acidic environments, and thus affords a means to optically measure evoked release of synaptic vesicle content into the extracellular space. Simultaneously, FFN102 allows the measurement of individual synaptic terminal activity by following fluorescence loss upon stimulation. Thus, FFN102 enables not only the identification of dopamine cells and their processes in brain tissue, but also the optical measurement of functional parameters including dopamine transporter activity and dopamine release at the level of individual synapses. As such, the development of FFN102 demonstrates that, by bringing together organic chemistry and neuroscience, molecular entities can be generated that match the endogenous transmitters in selectivity and distribution, allowing for the study of both the microanatomy and functional plasticity of the normal and diseased nervous system. dopamine reporter | secretion kinetics | molecular design | multiphoton imaging D opamine neurotransmission plays a key role in habit learning, motivation, reward, and motor function (1), and altered dopamine neurotransmission is associated with disorders such as Parkinson's disease, schizophrenia, and drug addiction (2-4). As a "social" neurotransmitter that overflows relatively long distances beyond its presynaptic terminals, dopamine's extrasynaptic concentration is principally determined by the combination of exocytotic neurotransmitter release and reuptake by the plasma membrane dopamine transporter (DAT) (5). Psychostimulants, such as cocaine and amphetamine (AMPH), increase extracellular dopamine via interactions with DAT.Extracellular dopamine concentration, particularly in the striatum where it is present at high levels, has been characterized by microdialysis (6, 7) and rapid electrochemical detection using carbon fiber cyclic voltammetry (8, 9) and amperometry (10). The excellent temporal resolution of the electrochemical methods is well suited for measuring changes in extrasynaptic dopamine concentration associated with neuronal activity. However, these approaches usually measure the release and reuptake of dopamine from large sets of striatal dopamine release sites and lack the spatial resolution required to study synaptic transmission at the level of individual presynaptic terminals.Optical methods provide vastly improved spatial resolution so that processes by which specific synapses are modulated can be studied. The first group of fluorescent reporters for the study of presynaptic function were the endocytic FM dyes (11), which act as tracers of exocytosis and endocytosis. Thes...
The neurotrophin BDNF regulates the activity-dependent modifications of synaptic strength in the CNS. Physiological and biochemical evidences implicate the NMDA glutamate receptor as one of the targets for BDNF modulation. In the present study, we investigated the effect of BDNF on the expression and plasma membrane abundance of NMDA receptor subunits in cultured hippocampal neurons. Acute stimulation of hippocampal neurons with BDNF differentially upregulated the protein levels of the NR1, NR2A and NR2B NMDA receptor subunits, by a mechanism sensitive to transcription and translation inhibitors. Accordingly, BDNF also increased the mRNA levels for NR1, NR2A and NR2B subunits. The neurotrophin NT3 also upregulated the protein levels of NR2A and NR2B subunits, but was without effect on the NR1 subunit. The amount of NR1, NR2A and NR2B proteins associated with the plasma membrane of hippocampal neurons was differentially increased by BDNF stimulation for 30 min or 24 h. The rapid upregulation of plasma membrane-associated NMDA receptor subunits was correlated with an increase in NMDA receptor activity. The results indicate that BDNF increases the abundance of NMDA receptors and their delivery to the plasma membrane, thereby upregulating receptor activity in cultured hippocampal neurons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.