BACKGROUND: Firefighting foam-contaminated ground water, which contains high levels of perfluoroalkyl substances (PFAS), is frequently found around airports. In 2018 it was detected that employees at a municipal airport in northern Sweden had been exposed to high levels of short-chain PFAS along with legacy PFAS (i.e., PFOA, PFHxS, and PFOS) through drinking water. OBJECTIVES: In this study, we aimed to describe the PFAS profile in drinking water and biological samples (paired serum and urine) and to estimate serum half-lives of the short-chain PFAS together with legacy PFAS. METHODS: Within 2 weeks after provision of clean water, blood sampling was performed in all 26 airport employees. Seventeen of them were then followed up monthly for 5 months. PFHxA, PFHpA, PFBS, PFPeS, and PFHpS together with legacy PFAS in water and biological samples were quantified using LC/MS/MS. Half-lives were estimated by assuming one compartment, first-order elimination kinetics. RESULTS: The proportions of PFHxA, PFHpA, and PFBS were higher in drinking water than in serum. The opposite was found for PFHxS and PFOS. The legacy PFAS accounted for about 50% of total PFAS in drinking water and 90% in serum. Urinary PFAS levels were very low compared with serum. PFBS showed the shortest half-life {average 44 d [95% confidence interval (CI): 37, 55 d]}, followed by PFHpA [62 d (95% CI: 51, 80 d)]. PFPeS and PFHpS showed average half-lives as 0.63 and 1.46 y, respectively. Branched PFOS isomers had average half-lives ranging from 1.05 to 1.26 y for different isomers. PFOA, PFHxS, and linear PFOS isomers showed average half-lives of 1.77, 2.87, and 2.93 y, respectively. DISCUSSION: A general pattern of increasing half-lives with increasing chain length was observed. Branched PFOS isomers had shorter half-lives than linear PFOS isomers.
Background: Exposures to perfluoroalkyl substances (PFAS) have shown positive associations with serum lipids in previous studies. While many studies on lipids investigated associations with perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA), there are only a few studies regarding other PFAS, such as perfluorohexane sulfonic acid (PFHxS). The purpose of the current study is to investigate if associations with serum lipids were present, not only for serum PFOS and PFOA, but also for PFHxS, and if the associations with PFAS remained also in a comparison based only on residency in areas with contrasting exposure to PFAS. Methods: 1945 adults aged 20-60 were included from Ronneby, Sweden, a municipality where one out of two waterworks had been heavily contaminated from aqueous fire-fighting foams, and from a nearby control area. The exposure was categorized based on either been living in areas with contrasting PFAS exposure or based on the actual serum PFAS measurements. Regression analyses of serum lipids were fitted against serum PFAS levels, percentile groups, smooth splines and between exposed and reference areas, adjusting for age, sex and BMI. Results: Drinking water contamination caused high serum levels of PFOS (median 157 ng/ml) and PFHxS (median 136 ng/ml) and PFOA (median 8.6 ng/ml). These serum PFAS levels in the exposed groups were 5 to 100-fold higher than in the controls. In this population with mixed PFAS exposure, predominantly PFOS and PFHxS, PFAS exposure were positively associated with serum lipids. This was observed both when quantifying exposure as contrast between exposed and controls, and in terms of serum PFAS. Due to high correlations between each PFAS, we cannot separate them. Conclusions: In conclusion, the present study provides further evidence of a causal association between PFAS and serum lipids, especially for PFHxS.
Background: Manganese (Mn) is an essential element but at excessive levels, it is neurotoxic. Even a moderate increase in Mn has been suggested to interfere with neurodevelopment in children. Genetics influencing Mn concentrations and toxicity is unclear.Objective: We assessed, in a cross-sectional study, whether common single-nucleotide polymorphisms in the Mn transporters SLC39A8 (influx) and SLC30A10 (efflux) are associated with neurodevelopment in children.Design: We genotyped SLC39A8 (rs13107325 C/T) and SLC30A10 (rs1776029 G/A and rs12064812 T/C) in Italian children (n = 686, ages 11–14). We then used linear regression models to analyze associations between genotype, blood Mn concentrations, and neurodevelopmental outcomes including intelligence, behavior, motor function, and sway. Inferred causal relationships were evaluated using instrumental variables (IV) analysis.Results: For SLC30A10 rs1776029, the minor allele (A) was associated with increased average blood Mn of 41% (p < 0.001), whereas minor alleles for rs12064812 (C) and rs13107325 (T) were associated with reduced blood Mn of 7% (p = 0.002) and 15% (p < 0.001), respectively. For children carrying genotypes associated with high blood Mn, we observed lower performance for certain IQ subtests, increased sway, and increased scores for behavioral problems. High Mn genotypes showed odds ratios of 2–4 (p ≤ 0.01) for high scores in tests assessing ADHD-related behavior. IV analyses suggested that several of the associations were mediated by blood Mn.Conclusions: Our results suggest that common polymorphisms in SLC39A8 and SLC30A10 influence neurodevelopmental outcomes in children via differences in Mn homeostasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.