When it comes to the discovery and analysis of yet uncharted bacterial traits, pure cultures are essential as only these allow detailed morphological and physiological characterization as well as genetic manipulation. However, microbiologists are struggling to isolate and maintain the majority of bacterial strains, as mimicking their native environmental niches adequately can be a challenging task. Here, we report the diversity-driven cultivation, characterization and genome sequencing of 79 bacterial strains from all major taxonomic clades of the conspicuous bacterial phylum Planctomycetes. The samples were derived from different aquatic environments but close relatives could be isolated from geographically distinct regions and structurally diverse habitats, implying that 'everything is everywhere'. With the discovery of lateral budding in 'Kolteria novifilia' and the capability of the members of the Saltatorellus clade to divide by binary fission as *
Viable but nonculturable (VBNC) cells were recognized 30 years ago; and despite decades of research on the topic, most results are disperse and apparently incongruous. Since its description, a huge controversy arose regarding the ecological significance of this state: is it a degradation process without real significance for bacterial life cycles or is it an adaptive strategy of bacteria to cope with stressful conditions? In order to solve the molecular mechanisms of VBNC state induction and resuscitation, researchers in the field must be aware and overcome common issues delaying research progress. In this review, we discuss the intrinsic characteristic features of VBNC cells, the first clues on what is behind the VBNC state's induction, the models proposed for their resuscitation and the current methods to prove not only that cells are in VBNC state but also that they are able to resuscitate.
Aims: To analyse viable but nonculturable (VBNC) state induction in Escherichia coli and resuscitation of VBNC suspensions in several conditions. Methods and Results: VBNC were induced in four media, two temperatures and six strains, but only cells produced at 4°C were able to resuscitate. Resuscitation of 14 VBNC suspensions obtained in several conditions occurred in the presence of supernatants of growing cells, in minimal medium supplemented with amino acids or after temperature change, depending on strain. A limited time period beyond no more resuscitation that could be observed was also confirmed. Conclusions: The supernatants positive effect is suggested to be because of a nonproteinaceous molecule, and a combination of methionine, glutamine, threonine, serine and asparagine could be used as primary mix for resuscitation experiments. Significance and Impact of the Study: Escherichia coli resuscitation was already attempted in several conditions, but it is the first time that a positive result was observed in minimal medium supplemented with amino acids or after temperature change. The role of amino acids in resuscitation is of special interest since was never reported for any species.
Background: TP53 is one of major tumour suppressor genes being essential in preservation of genome integrity. Two very common polymorphisms have been demonstrated to contribute to cancer susceptibility and tumour behaviour. The purpose of this study was to evaluate the role of Arg72Pro and PIN3 Ins16bp polymorphisms in TP53 gene as genetic susceptibility and predictive markers to breast cancer.
Signal transduction is an essential process that allows bacteria to sense their complex and ever-changing environment and adapt accordingly. Three distinct major types of signal-transducing proteins (STPs) can be distinguished: one-component systems (1CSs), two-component systems (2CSs), and extracytoplasmic-function factors (ECFs). Since Actinobacteria are particularly rich in STPs, we comprehensively investigated the abundance and diversity of STPs encoded in 119 actinobacterial genomes, based on the data stored in the Microbial Signal Transduction (MiST) database. Overall, we observed an approximately linear correlation between the genome size and the total number of encoded STPs. About half of all membrane-anchored 1CSs are protein kinases. For both 1CSs and 2CSs, a detailed analysis of the domain architectures identified novel proteins that are found only in actinobacterial genomes. Many actinobacterial genomes are particularly enriched for ECFs. As a result of this study, almost 500 previously unclassified ECFs could be classified into 18 new ECF groups. This comprehensive survey demonstrates that actinobacterial genomes encode previously unknown STPs, which may represent new mechanisms of signal transduction and regulation. This information not only expands our knowledge of the diversity of bacterial signal transduction but also provides clear and testable hypotheses about their mechanisms, which can serve as starting points for experimental studies. IMPORTANCEIn the wake of the genomic era, with its enormous increase in the amount of available sequence information, the challenge has now shifted toward making sense and use of this treasure chest. Such analyses are a prerequisite to provide meaningful information that can help guide subsequent experimental efforts, such as mechanistic studies on novel signaling strategies. This work provides a comprehensive analysis of signal transduction proteins from 119 actinobacterial genomes. We identify, classify, and describe numerous novel and conserved signaling devices. Hence, our work serves as an important resource for any researcher interested in signal transduction of this important bacterial phylum, which contains organisms of ecological, biotechnological, and medical relevance. Bacterial survival critically depends on the ability to swiftly respond to environmental changes. To efficiently monitor the surrounding environment, microbial genomes encode numerous and highly diverse proteins that can sense a given extracellular stimulus, transmit the signal to the cytoplasm, and elicit a proper response. These signal-transducing proteins (STPs) can be divided into three major groups: one-component systems (1CSs), two-component systems (2CSs), and extracytoplasmic-function factors (ECFs). The vast majority of STPs in bacteria are 1CSs. These systems are composed of a single protein that contains an input domain, which senses the stimulus, and an output domain, which elicits the response by binding nucleic acids, modifying proteins, or performing an enzymati...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.