MicroRNAs (miRNA) have rapidly emerged as modulators of gene expression in cancer in which they may have great diagnostic and therapeutic import. ) is downregulated in several human malignancies including hepatocellular carcinoma (HCC). Here, we show that miR-199a-3p targets mammalian target of rapamycin (mTOR) and c-Met in HCC cells. Restoring attenuated levels of miR-199a-3p in HCC cells led to G 1 -phase cell cycle arrest, reduced invasive capability, enhanced susceptibility to hypoxia, and increased sensitivity to doxorubicin-induced apoptosis. These in vitro findings were confirmed by an analysis of human HCC tissues, which revealed an inverse correlation linking miR-199a-3p and mTOR as well as a shorter time to recurrence after HCC resection in patients with lower miR-199a-3p expression. These results suggest that tactics to regulate mTOR and c-Met by elevating levels of miR-199a-3p may have therapeutic benefits in highly lethal cancers such as HCC. Cancer Res; 70(12); 5184-93. ©2010 AACR.
The performance of circulating biomarkers for the diagnosis of hepatocellular carcinoma (HCC) is sub-optimal. In this study we tested circulating microRNAs as biomarkers for HCC in cirrhotic patients by performing a two stage study: a discovery phase conducted by microarray and a validation phase performed by qRT-PCR in an independent series of 118 patients. Beside miRNAs emerged from the discovery phase, miR-21, miR-221, miR-519d were also tested in the validation setting on the basis of literary and tissue findings. Deregulated microRNAs were assayed in HCC-derived cells in the intracellular compartment, cell culture supernatant and exosomal fraction. Serum and tissue microRNA levels were compared in 14 patients surgically treated for HCC. From the discovery study, it emerged that seven circulating microRNAs were differentially expressed in cirrhotic patients with and without HCC. In the validation set, miR-939, miR-595 and miR-519d were shown to differentiate cirrhotic patients with and without HCC. MiR-939 and miR-595 are independent factors for HCC. ROC curves of miR-939, miR-595 and miR-519d displayed that AUC was higher than AFP. An exosomal secretion of miR-519d, miR-21, miR-221 and miR-1228 and a correlation between circulating and tissue levels of miR-519d, miR-494 and miR-21 were found in HCC patients. Therefore, we show that circulating microRNAs deserve attention as non-invasive biomarkers in the diagnostic setting of HCC and that exosomal secretion contributes to discharging a subset of microRNAs into the extracellular compartment.
The aberrant expression of miR-221 is a hallmark of human cancers, including hepatocellular carcinoma (HCC), and its involvement in drug resistance, together with a proved efficacy of anti-miR-221 molecules, strengthen its role as an attractive target candidate in the oncologic field. The discovery of biomarkers predicting the response to treatments represents a clinical challenge in the personalized treatment era. This study aimed to investigate the possible role of miR-221 as a circulating biomarker in HCC patients undergoing sorafenib treatment as well as to evaluate its contribution to sorafenib resistance in advanced HCC. A chemically induced HCC rat model and a xenograft mouse model, together with HCC-derived cell lines were employed to analyze miR-221 modulation by Sorafenib treatment. Data from the functional analysis were validated in tissue samples from surgically resected HCCs. The variation of circulating miR-221 levels in relation to Sorafenib treatment were assayed in the animal models and in two independent cohorts of patients with advanced HCC. MiR-221 over-expression was associated with Sorafenib resistance in two HCC animal models and caspase-3 was identified as its target gene, driving miR-221 anti-apoptotic activity following Sorafenib administration. Lower pre-treatment miR-221 serum levels were found in patients subsequently experiencing response to Sorafenib and an increase of circulating miR-221 at the two months assessment was observed in responder patients. MiR-221 might represent a candidate biomarker of likelihood of response to Sorafenib in HCC patients to be tested in future studies. Caspase-3 modulation by miR-221 participates to Sorafenib resistance. .
Hepatocellular carcinoma (HCC) represents the second cause of cancer-related mortality worldwide and is associated with poor prognosis, especially in patients not amenable for curative treatments. The multi-kinase inhibitor sorafenib represents the first-line treatment option for advanced HCC; nevertheless, its effectiveness is limited due to tumor heterogeneity as well as innate or acquired drug resistance, raising the need for new therapeutic strategies. MicroRNAs (miRNAs) involvement in treatment response as well as their safety and efficacy in preclinical models and clinical trials have been widely documented in the oncologic field, including HCC. Here, we identified miR-494 upregulation in a subgroup of human and rat HCCs with stem cell-like characteristics, as well as multiple epigenetic mechanisms involved in its aberrant expression in HCC cell lines and patients. Moreover, we identified p27, puma and pten among miR-494 targets, contributing to speed up cell cycle progression, enhance survival potential in stressful conditions and increase invasive and clonogenic capabilities. MiR-494 overexpression increased sorafenib resistance via mTOR pathway activation in HCC cell lines and, in line, high miR-494 levels associated with decreased sorafenib response in two HCC animal models. A sorafenib-combined anti-miR-494-based strategy revealed an enhanced anti-tumor potential with respect to sorafenib-only treatment in our HCC rat model. In conclusion, our findings suggested miR-494 as a possible therapeutic target as well as a candidate biomarker for patient stratification in advanced HCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.