Fatty acid synthase (FASN) is the metabolic enzyme responsible for the endogenous synthesis of the saturated long-chain fatty acid, palmitate. In contrast to most normal cells, FASN is overexpressed in a variety of human cancers, including cutaneous melanoma, in which its levels of expression are associated with tumor invasion and poor prognosis. We have previously shown that FASN inhibition with orlistat significantly reduces the number of spontaneous mediastinal lymph node metastases following the implantation of B16-F10 mouse melanoma cells in the peritoneal cavity of C57BL/6 mice. In this study, we investigate the biological mechanisms responsible for the FASN inhibition-induced apoptosis in B16-F10 cells. Both FASN inhibitors, cerulenin and orlistat, significantly reduced melanoma cell proliferation and activated the intrinsic pathway of apoptosis, as demonstrated by the cytochrome c release and caspase-9 and -3 activation. Further, apoptosis was preceded by an increase in both reactive oxygen species production and cytosolic calcium concentrations and independent of p53 activation and mitochondrial permeability transition. Taken together, these findings demonstrate the mitochondrial involvement in FASN inhibition-induced apoptosis in melanoma cells.
The mitochondrial electrical membrane potential (Δψ) is the main component of the proton motive force (Δp) generated across the inner mitochondrial membrane during electron flow through the respiratory chain. Among the techniques available to assess Δψ, methods that rely on the spectrophotofluorometric responses of dyes are widely employed for whole suspensions of isolated mitochondria or permeabilized cells. Safranine is one of the dyes currently used most often for this purpose. Safranine is a lipophilic cationic dye that undergoes optical shifts upon its potential-dependent distribution between the external medium and the intramitochondrial compartment and on its stacking to inner mitochondrial membrane anionic sites. The association between the optical changes of safranine and the membrane potential allows unknown Δψ values to be estimated from an equation describing their relationship. Here, we describe the use of safranine as a fluorescent indicator of Δψ in isolated mitochondria and digitonin-permeabilized cells. We present suitable conditions to employ safranine as a Δψ indicator.
Methylmalonic acidemia is one of the most prevalent inherited metabolic disorders involving neurological deficits. In vitro experiments, animal model studies and tissue analyses from human patients suggest extensive impairment of mitochondrial energy metabolism in this disease. This review summarizes changes in mitochondrial energy metabolism occurring in methylmalonic acidemia, focusing mainly on the effects of accumulated methylmalonic acid, and gives an overview of the results found in different experimental models. Overall, experiments to date suggest that mitochondrial impairment in this disease occurs through a combination of the inhibition of specific enzymes and transporters, limitation in the availability of substrates for mitochondrial metabolic pathways and oxidative damage.
The effect of methylmalonate (MMA) on mitochondrial succinate oxidation has received great attention since it could present an important role in energy metabolism impairment in methylmalonic acidaemia. In the present work, we show that while millimolar concentrations of MMA inhibit succinate-supported oxygen consumption by isolated rat brain or muscle mitochondria, there is no effect when either a pool of NADH-linked substrates or N,N,N',N'-tetramethyl-p-phenylendiamine (TMPD)/ascorbate were used as electron donors. Interestingly, the inhibitory effect of MMA, but not of malonate, on succinate-supported brain mitochondrial oxygen consumption was minimized when nonselective permeabilization of mitochondrial membranes was induced by alamethicin. In addition, only a slight inhibitory effect of MMA was observed on succinate-supported oxygen consumption by inside-out submitochondrial particles. In agreement with these observations, brain mitochondrial swelling experiments indicate that MMA is an important inhibitor of succinate transport by the dicarboxylate carrier. Under our experimental conditions, there was no evidence of malonate production in MMA-treated mitochondria. We conclude that MMA inhibits succinate-supported mitochondrial oxygen consumption by interfering with the uptake of this substrate. Although succinate generated outside the mitochondria is probably not a sig-nificant contributor to mitochondrial energy generation, the physiopathological implications of MMA-induced inhibition of substrate transport by the mitochondrial dicarboxylate carrier are discussed.
The neurodegeneration that occurs in methylmalonic acidemia is proposed to be associated with impairment of mitochondrial oxidative metabolism resulting from methylmalonate (MMA) accumulation. The present study evaluated the effects of MMA on oxygen consumption by isolated rat brain mitochondria in the presence of NADH-linked substrates (α-ketoglutarate, citrate, isocitrate, glutamate, malate, and pyruvate). Respiration supported either by glutamate or glutamate plus malate was significantly inhibited by MMA (1-10 mM), whereas no inhibition was observed when a cocktail of NADH-linked substrates was used. Measurements of glutamate transport revealed that the inhibitory effect of MMA on respiration maintained by this substrate is not due to inhibition of its mitochondrial uptake. In light of this result, the effect of MMA on the activity of relevant enzymes involved in mitochondrial glutamate metabolism was investigated. MMA had minor inhibitory effects on glutamate dehydrogenase and aspartate aminotransferase, whereas α-ketoglutarate dehydrogenase was significantly inhibited by this metabolite (K(i) = 3.65 mM). Moreover, measurements of α-ketoglutarate transport and mitochondrial MMA accumulation indicated that MMA/α-ketoglutarate exchange depletes mitochondria from this substrate, which may further contribute to the inhibition of glutamate-sustained respiration. To study the effect of chronic in vivo MMA treatment on mitochondrial function, young rats were intraperitoneally injected with MMA. No significant difference was observed in respiration between isolated brain mitochondria from control and MMA-treated rats, indicating that in vivo MMA treatment did not lead to permanent mitochondrial respiratory defects. Taken together, these findings indicate that the inhibitory effect of MMA on mitochondrial oxidative metabolism can be ascribed to concurrent inhibition of specific enzymes and lower availability of respiratory substrates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.