The olfactory bulb (OB) receives odor information from the olfactory epithelium and relays this to the olfactory cortex. Using a mouse model, we found that development and maturation of OB interneurons depends on the zinc finger homeodomain factor teashirt zinc finger family member 1 (TSHZ1). In mice lacking TSHZ1, neuroblasts exhibited a normal tangential migration to the OB; however, upon arrival to the OB, the neuroblasts were distributed aberrantly within the radial dimension, and many immature neuroblasts failed to exit the rostral migratory stream. Conditional deletion of Tshz1 in mice resulted in OB hypoplasia and severe olfactory deficits. We therefore investigated olfaction in human subjects from families with congenital aural atresia that were heterozygous for TSHZ1 loss-of-function mutations. These individuals displayed hyposmia, which is characterized by impaired odor discrimination and reduced olfactory sensitivity. Microarray analysis, in situ hybridization, and ChIP revealed that TSHZ1 bound to and regulated expression of the gene encoding prokineticin receptor 2 (PROKR2), a G protein-coupled receptor essential for OB development. Mutations in PROKR2 lead to Kallmann syndrome, characterized by anosmia and hypogonadotrophic hypogonadism. Our data indicate that TSHZ1 is a key regulator of mammalian OB development and function and controls the expression of molecules involved in human Kallmann syndrome.
Neuronal progenitor cells (NPCs) possess high potential for use in regenerative medicine. To overcome their limited mitotic competence, various immortalization strategies have been applied that allow their prolonged maintenance and expansion in vitro. Such immortalized cells can be used for the design and discovery of new cell-based therapies for neurodegenerative diseases, such as Parkinson's disease. We immortalized rat ventral mesencephalic NPCs by using SV40 large T antigen (SV40Tag). All cell clones displayed a two- to three-fold higher proliferation rate compared with the primary cells. In order to induce dopaminergic differentiation of generated cell clones, both glial-derived neurotrophic factor and di-butyryl cyclic adenosine monophosphate were applied. Treated cells were then characterized regarding the expression of dopaminergic lineage markers, differentiation of various cell populations, calcium imaging in the presence of kainate, and immunohistochemistry after intrastriatal transplantation. Treated cells displayed morphological maturation, and calcium imaging revealed neuronal properties in the presence of kainate. These cells also expressed low mRNA levels of the dopamine transporter and tyrosine hydroxylase (TH), although no TH-immunopositive neurons were found. Intrastriatal transplantation into the neurotoxin-lesioned rats did not induce further differentiation. As an alternative approach, we silenced SV40Tag with short interfering RNA, but this was not sufficient to trigger differentiation into dopaminergic neurons. Nevertheless, neuronal and glial cells were detected as shown by beta-tubulin type III and glial fibrillary acidic protein staining, respectively. SV40Tag cells are suitable for carrying out controlled genetic modifications as shown by overexpression of enhanced green fluorescence protein after efficient non-viral transfection.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the death of motor neurons (MN) in the motor cortex, brain stem, and spinal cord. In the present study, we established an ALS in vitro model of purified embryonic MNs, derived from non-transgenic and mutant SOD1-G93A transgenic mice, the most commonly used ALS animal model. MNs were cultured together with either non-transgenic or mutant SOD1-G93A astrocyte feeder layers. Cell viability following exposure to kainate as excitotoxic stimulus was assessed by immunocytochemistry and calcium imaging. We then examined the neuroprotective effects of N-acetyl-GLP-1(7-34) amide (N-ac-GLP-1), a long-acting, N-terminally acetylated, C-terminally truncated analog of glucagon-like peptide-1 (GLP-1). GLP-1 has initially been studied as a treatment for type II diabetes based on its function as insulin secretagogue. We detected neuroprotective effects of N-ac-GLP-1 in our in vitro system, which could be attributed to an attenuation of intracellular calcium transients, not only due to these antiexcitotoxic capacities but also with respect to the increasing knowledge about metabolic deficits in ALS which could be positively influenced by N-ac-GLP-1, this compound represents an interesting novel candidate for further in vivo evaluation in ALS.
Chronic dysregulation of the intracellular Ca(2+) homeostasis (excitotoxicity) is thought to contribute to the development of motor neuron diseases. Valproic acid (VPA) is widely used as an antiepileptic drug and acts mainly by inhibition of sodium channels and by enhancing the level of the inhibitory neurotransmitter gamma-aminobutyric acid. Neuroprotective capacities of VPA are supposed to arise also from the inhibition of histone deacetylases. We investigated the viability of highly purified rat embryonic motor neurons cultured on glial feeder layers, composed of either astrocytes or Schwann cells, or in the absence of glia, monoculture in presence of VPA and/or kainate (KA) using immunocytochemistry and calcium imaging. A significant effect of the culture and co-culture conditions on the viability of motor neurons in our in vitro model of excitotoxicity was detected. The neuroprotective effect of VPA on primary embryonic motor neuron cultures was not proven. A functional interaction between VPA and KA occurred during the first 10 days in culture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.