Nonrandom selection and multiple blood feeding of human hosts by Anopheles mosquitoes may exacerbate malaria transmission. Both patterns of blood feeding and their relationship to malaria epidemiology were investigated in Anopheles vectors in Papua New Guinea (PNG). Blood samples from humans and mosquito blood meals were collected in villages and human genetic profiles (“fingerprints”) were analyzed by genotyping 23 microsatellites and a sex-specific marker. Frequency of blood meals acquired from different humans, identified by unique genetic profiles, was fitted to Poisson and negative binomial distributions to test for nonrandom patterns of host selection. Blood meals with more than one genetic profiles were classified as mosquitoes that fed on multiple humans. The age of a person bitten by a mosquito was determined by matching the blood-meal genetic profile to the villagers’ genetic profiles. Malaria infection in humans was determined by PCR test of blood samples. The results show nonrandom distribution of blood feeding among humans, with biased selection toward males and individuals aged 15–30 years. Prevalence of Plasmodium falciparum infection was higher in this age group, suggesting males in this age range could be super-spreaders of malaria parasites. The proportion of mosquitoes that fed on multiple humans ranged from 6% to 13% among villages. The patterns of host utilization observed here can amplify transmission and contribute to the persistence of malaria in PNG despite efforts to suppress it with insecticidal bed nets. Excessive feeding on males aged 15–30 years underscores the importance of targeted interventions focusing on this demographic group.
Background: Long-lasting insecticidal nets (LLIN), improved diagnosis and artemisinin-based combination therapy (ACT) have reduced malaria prevalence in Papua New Guinea since 2008. Yet, national incidence trends are inconclusive due to confounding effects of the scale-up of rapid diagnostic tests, and inconsistencies in routine reporting. Methods: Malaria trends and their association with LLIN and ACT roll-out between 2010 and 2014 in seven sentinel health facilities were analysed. The analysis included 35,329 fever patients. Intervention effects were estimated using regression models. Results: Malaria incidence initially ranged from 20 to 115/1000 population; subsequent trends varied by site. Overall, LLIN distributions had a cumulative effect, reducing the number of malaria cases with each round (incidence rate ratio ranging from 0.12 to 0.53 in five sites). No significant reduction was associated with ACT introduction. Plasmodium falciparum remained the dominant parasite in all sentinel health facilities. Resurgence occurred in one site in which a shift to early and outdoor biting of anophelines had previously been documented. Conclusions: LLINs, but not ACT, were associated with reductions of malaria cases in a range of settings, but sustainability of the gains appear to depend on local factors. Malaria programmes covering diverse transmission settings such as Papua New Guinea must consider local heterogeneity when choosing interventions and ensure continuous monitoring of trends.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.