This paper analyzes the drivers behind the changes of the Aggregate Carbon Intensity (ACI) of Latin America and the Caribbean (LAC) power sector in five periods between 1990 and 2017. Since 1990 the carbon intensity of the world has been reduced almost 8.8% whereas the carbon intensity of LAC countries only decreased 0.8%. Even though by 2017 the regional carbon intensity is very similar to the one observed by 1990, this index has showed high variability, mainly in the last three years when the ACI of LAC fell from 285 gCO2/kWh in 2015 to 257.7 gCO2/kWh. To understand what happened with the evolution of the carbon intensity in the region, in this paper a Logarithmic Mean Divisia for Index Decomposition Analysis (IDA-LMDI) is carried out to identify the accelerating and attenuating drivers of the ACI behavior along five periods. The proposal outperforms existing studies previously applied to LAC based upon a single period of analysis. Key contributions are introduced by considering the type of fuel used in power plants as well as specific time-series of energy flows and CO2 emissions by country. Results reveal structural reasons for the increase of the ACI in 1995–2003 and 2008–2015, and intensity reasons for the decrease of the ACI in 1990–1995, 2003–2008 and 2015–2017.
This paper presents the application of the Logarithmic Mean Divisia Index Decomposition Analysis (LMDI) to the aggregate carbon intensity (ACI) of the power sector in Colombia in the period 1990–2020, with the aim of identifying the main drivers influencing the ACI change. The analysis performed identifies the main drivers among: carbon intensity, generation efficiency, and contribution of fossil generation at the specific and total level of electricity production. The analysis is performed at the aggregate and disaggregated level of fossil fuels. Due to the highly variable behavior of the ACI, a multi-temporal decomposition is performed in the eight presidential administrations in the period of analysis. For each period, the main drivers are identified and the energy policy implications and their effects on the operation and management of the power sector are analyzed. The results show that the main driver is the fossil share of total energy production. Important effects on thermal generation efficiency and fossil energy mix were also identified in some analysis periods. The need for effective long-term policies and regulation in relation to the factors influencing the ACI was identified. It is recommended to accelerate the diversification of the energy mix of the power sector and the permanent monitoring of the behavior of the drivers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.