Abstract:The reliability of Computational Fluid Dynamics (CFD) in reproducing qualitative and quantitative features of loadings exerted by waves on Seawave Slot-cone Generators (SSG) has been investigated via 17 numerical experiments, conducted with the suite Flow 3D. The geometry of the Wave Energy Converter (WEC), as well as the characteristics of the foreshore in front of it, were identical to those used by the authors in a laboratory study, carried out on a small scale model of a pilot plant to be located along the West Norwegian coasts; the similitude of the layouts allowed an in depth comparison between the results. A good agreement has been generally found between physical and numerical experiments, apart from some aspects of the wave-structure interaction that, however, can be considered secondary for engineering purposes.
The paper discusses preliminary results of a CFD study on the structural response of a Sloping Top Breakwater subject to wave overtopping. The analysis showed that the transmitted wave field act to increase both the landward and the seaward forces and that the conventional design methods may be not adequate to guarantee an appropriate degree of safety to the structure. The study also confirmed the previous finding by Walkden et al. (2001), which noticed the existence of strong impulsive loadings on the inner face of the wall, due to violent overtopping events.
The paper deals with the validation of a wave by wave approach for the calculation of the wave loadings exerted on an overtopping type Wave Energy Converter named Seawave Slot-Cone Generator (SSG). The prediction method, originally developed for regular waves, employs the Iribarren number (Battjes, 1974), the slope parameter (Svendsen, 2006) and the Linear thrust parameter (Buccino et al., 2015) as main predictors. The approach has been tested against five 2-D random wave tests, carried out in view of the design of a new pilot plant to be located along the Norwegian coast.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.