We introduce a novel conceptual approach to managing reduced crew operations (RCO) in commercial aviation, namely the tripartite concept of a remote co-pilot center. We adopt a workload-centered perspective. Functions are allocated on a higher-level analysis along the different flight phases.
One main hurdle towards commercial airliners' Reduced-Crew Operations (RCO) is how to encounter pilot incapacitation. The aim of this modelling study is to evaluate the potential effects of a single-pilot's incapacitation on a future design approach to RCO. Most solutions propose a ground support of the pilot by a remote operator whom control should be handed over in case of an emergency. Both incapacitation and homicide-suicide have been discussed in the literature but neither of these events have been modelled nor evaluated empirically. We introduce a future operational design concept for RCO which includes a remotecopilot as ground support and automation tools monitoring pilot's health and entries into aircraft systems. The hazard analysis technique System-Theoretic Process Analysis (STPA) was used to model and analyse scenarios of incapacitation/homicidesuicide. A hierarchical control structure showed how RCO can be embedded into commercial aviation. The STPA of pilot incapacitation and two scenarios of pilot homicide-suicide showed how unsafe control actions leading to an incident or accident after incapacitation/homicide-suicide could be prevented. The possible detection and takeover of control by the ground support in the case of incapacitation raised the question for detailed procedures on how to react to its detection. Either an autoland by the remote-copilot or by an affiliated system is possible. An additional breakup of data-link may only be solved by an automatic landing system on-board.
The aim of the present paper is to demonstrate how a subset of methods from Cognitive Work Analysis (CWA) in combination with Social Network Analysis (SNA) can be used to analyse the effects of a reduced crew in a legacy system of a commercial airliner's two-pilot-crew operations. Whereas existing research approaches have used different methodological approaches such as classical workload evaluations, we focus on social organisation and cooperation at early conceptual design stages. A case study of Reduced-Crew Operations (RCO) in commercial aviation highlights how Work Domain Analysis, Control Task Analysis and Social Organization and Cooperation Analysis were applied to allocate functions and identify future automation requirements. Furthermore, the SNA shows the possible interactions in future RCO. The effect of technological failure on the network architecture's resilience is also explored. A proposal on how to react to a data-link outage and break-up in RCO is made with respect to limitations in technology. In this way, the work can foster identifying automation requirements and related possible failures at early stages in the design process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.