Breast cancer remains the most frequently diagnosed form of female’s cancer, and in recent years it has become the most common cause of cancer death in women worldwide. Like many other tumours, breast cancer is a histologically and biologically heterogeneous disease. In recent years, considerable progress has been made in diagnosis, subtyping, and complex treatment of breast cancer with the aim of providing best suited tumour-specific personalized therapy. Traditional methods for breast cancer diagnosis include mammography, MRI, biopsy and histological analysis of tumour tissue in order to determine classical markers such as estrogen and progesterone receptors (ER, PR), cytokeratins (CK5/6, CK14, C19), proliferation index (Ki67) and human epidermal growth factor type 2 receptor (HER2). In recent years, these methods have been supplemented by modern molecular methodologies such as next-generation sequencing, microRNA, in situ hybridization, and RT-qPCR to identify novel molecular biomarkers. MicroRNAs (miR-10b, miR-125b, miR145, miR-21, miR-155, mir-30, let-7, miR-25-3p), altered DNA methylation and mutations of specific genes (p16, BRCA1, RASSF1A, APC, GSTP1), circular RNA (hsa_circ_0072309, hsa_circRNA_0001785), circulating DNA and tumour cells, altered levels of specific proteins (apolipoprotein C-I), lipids, gene polymorphisms or nanoparticle enhanced imaging, all these are promising diagnostic and prognostic tools to disclose any specific features from the multifaceted nature of breast cancer to prepare best suited individualized therapy.