Low-level laser therapy has been investigated as a possible stimulus for enhancement of proliferation and differentiation of various cell types, but few reports relate undifferentiated mouse pulp cells (OD-21) response to irradiation in in vitro models. The aim of this study was to analyze the influence of low-level laser therapy (λ=660 nm), with three different irradiation times, on the behavior of OD-21 cell line. The cells were cultivated and divided into three groups: non-irradiated/control (group I); irradiated with 88 s (group II); irradiated with 177 s (group III) and irradiated with 265 s (group IV). Cell growth and viability were assessed after 7 and 10 days. Data were analyzed by Kruskal-Wallis and Mann-Whitney tests (α=.05). At day 7, there was a higher cell growth in groups I and II, as compared to group IV (p<.01). At the 10th day, group I showed a higher cell growth as compared to group II (p<.05). Cell viability in group IV was significantly lower at the 7th day, as compared to groups I (p<.001), II (p<.01) and III (p<.001). Cell viability in all the groups was over 80%, except in group IV at day 7. Irradiation time of group I influenced positively the proliferation and viability of OD-21 cells in late cell culture period.
Keywords: Low-Level Laser Therapy. Cell Culture. Stem Cells.
ResumoA terapia a laser de baixa intensidade tem sido investigada como possível estímulo para aumento da proliferação e diferenciação de vários tipos de células, mas poucos relatos relacionam a resposta de células indiferenciadas da polpa dentária de camundongos (OD-21) à irradiação em modelos in vitro. O objetivo deste estudo foi analisar a influência do laser de baixa intensidade (λ=660 nm), com três períodos de irradiação diferentes, no comportamento das células da linhagem OD-21. As células foram cultivadas e distribuídas em três grupos: não irradiado / controle (grupo I); irradiado com 88 s (grupo II); irradiado com 177 s (grupo III) e irradiado com 265 s (grupo IV). O crescimento e a viabilidade celular foram avaliados após 7 e 10 dias. Os dados foram analisados pelos testes de Kruskal-Wallis e Mann-Whitney (α = 0,05). No dia 7, houve crescimento celular maior nos grupos I e II, em comparação ao grupo IV (p <0,01). No décimo dia, o grupo I apresentou crescimento celular superior ao grupo II (p <0,05). A viabilidade celular no grupo IV foi significativamente menor no sétimo dia, em comparação aos grupos I (p <0,001), II (p <0,01) e III (p <0,001). A viabilidade celular em todos os grupos foi superior a 80%, exceto no grupo IV no dia 7. O tempo de irradiação do grupo I influenciou positivamente a proliferação e a viabilidade das células OD-21 no período mais tardio da cultura celular.
Palavras-chave: Laserterapia de Baixa Intensidade. Cultura Celular. Células Tronco.
The aim of this study was to assess the surface and the substrate/glass ionomer cement (GIC) interface after Er:YAG laser irradiation by means of scanning electron microcopy. Material and methods: Thirty human third molars were selected and had their roots removed. Crowns were sectioned to obtain discs that were randomly assigned to three groups according to the surface pretreatment: 40% polyacrylic acid (control); Er:YAG laser irradiation (80mJ/2Hz) or Er:YAG laser followed by 40% polyacrylic acid. Two discs of each group were put aside to the surface analysis and the others were bisected. One half received Ketac-Fil and the other received Fuji II LC. Specimens were prepared for SEM and were analyzed under different magnifications. Results: Er:YAG laser group showed no adhesive interface for both enamel and dentin, but strongly damaged the interface build-up for dentin/Fuji II LC. The application of laser irradiation followed by the polyacrylic acid exhibited gaps and irregularities for both substrates. Conclusion:Er:YAG laser irradiation combined or not with 40% polyacrylic acid produced a surface unfavorable for GIC interaction, especially for the resin-modified ones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.